Anaerobic digestion of municipal solid waste in thermophilic sequential batch process

R. ADHIKARI, J.P. JUANGA, C. VISVANATHAN*

Environmental Engineering and Management Program, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani, 12120, Thailand

*Corresponding author: visu@ait.ac.th

SUMMARY: Anaerobic digestion of organic fraction of municipal solid waste is an attractive technology for waste stabilization with generation of valuable byproducts, biogas and stabilized waste. Shortening the digestion time along with enhanced process efficiency is one of the important aspects of this study. This paper presents the results from pilot scale experimental investigation on sequential batch anaerobic digestion under thermophilic condition. The process involves coupling of stabilized and freshly loaded reactor for leachate cross-recirculation until the fresh reactor shifted to active methane phase ($CH_4 \geq 50\%$; $pH \geq 7$). Three cycles of sequencing operation were conducted with different leachate recirculation rates. The reactor used for start-up is operated using an optimized combined process (pre-stage: microaeration and flushing; methane phase: pH adjustment and inoculum addition) for a period of 76 days with methane yield of 143 L CH_4/kg VS. The results show that start-up period decreased with subsequent cycles; consequently digestion period has been reduced from 26 days to 23 days and 21 days for Cycle I, Cycle II, and Cycle III, respectively. It was observed that increased recirculation rate from 0.34 to 0.58 m3/m3 waste.day results into higher methane yield and shorter digestion time. Cycle III exhibits an optimum process efficiency of 81.7% (240 L CH_4/kg VS) as compared with the methane yield from lab-scale biochemical methane potential (BMP) test (294 L CH_4/kg VS). Thus, anaerobic digestion in subsequent sequencing operation under thermophilic condition is a viable option of organic solid waste treatment.

Keyword: Anaerobic digestion, biogas, municipal solid waste, leachate cross-recirculation

1 Introduction

Rapid waste generation along with urbanization and population growth creates critical concerns on municipal solid waste (MSW) management strategies. Generally, improper waste management generates numerous problems including environmental pollution, degradation of sanitation, unhygienic living conditions, etc. Proper MSW management such as source reduction, recycling, and composting are presently practiced in most developing countries in Asia. However, the existing management was not able to tackle huge amount of waste which has been resorted only to dispose in open dumps or unsanitary landfills. Importantly, MSW characteristics in most Asian countries is known for its high organic and moisture content, and low calorific value which makes it unsuitable for direct landfill disposal and incineration because of potential emissions (Visvanathan et al. 2004). Recently, increased environmental awareness and concern over direct landfilling issues have stimulated new approaches for organic fraction of MSW treatment prior disposal. In this regard, aerobic and anaerobic biological processes are considered as useful pre-treatment technologies for volume reduction and waste stabilization prior to landfilling.

The importance of anaerobic digestion for organic waste treatment is a growing interest towards sustainable MSW management and able to support for alternative renewable energy resources. The process involves the conversion of waste biodegradable fraction into biogas and stable residue that can be used as fertilizer or compost. Anaerobic biodegradation proceeds in the absence of oxygen and produce byproducts after a series of metabolic interactions among various groups of microorganisms. Anaerobic system generates energy in the form of methane as a source of electricity that can be used to operate the process with energy surplus. From the life cycle assessment (LCA) perspective, anaerobic digestion is considered as the best LCA of all renewable energies like wind, water, etc. In life cycle assessment using eco-indicator method, it also showed an excellent LCA
performance as compared to other treatment technology like composting and incineration (Edelmann et al., 2004).

Anaerobic digestion is classified into two processes based on the stages of operation, namely batch and continuous process. The sequential batch anaerobic composting (SEBAC) process uses a combination of high solid fermentation and leachate recycling between new and stabilized reactor to provide moisture, nutrients and inocula for rapid start-up (Chynoweth et al., 1992; Chynoweth et al., 2003). Researches have proved that biogas production is relatively low under mesophilic (37°C) than thermophilic (55°C) condition. Besides, digestion period can be considerably shortened under higher operating temperature (Juanga, 2005; Cecchi et al., 2003). State-of-the-art research on sequential batch anaerobic digestion needs further investigation especially by employing several cycles of sequencing operation with increased leachate cross-recirculation rate for an attempt to further optimize the process performance.

2 Materials and Methods

Experiments were conducted in pilot scale reactors made of stainless steel. The total volume of reactor is approximately 375 L while the designated volume available for waste compaction is 260 L. The digesters were equipped with top removable cover for waste loading and unloading. Optimum thermophilic condition of 55°C was maintained by a digital temperature controller wherein hot water from water bath was pumped within the water jacket. The leachate recirculation system consists of the reactor’s bottom outlet connected to leachate storage tank. The tank is equipped with pump, flow meter, and liquid distribution line up to the top inlet of the reactor. The sprinkler placed at 3 cm below the top cover, distributes water throughout the waste surface. The reactor is equipped with biogas sampling port and biogas production measurement by using drum-type gas meter (Ritter TG05/2).

2.1 Feedstock Characteristics

The substrate used collected from Tahklong municipality dumpsite (Pathumthani, Thailand) was manually segregated to remove bulky and inorganic materials. After segregation, sorted waste was shredded to a particle size of approximately 30 mm. The physical characteristics of waste showed high moisture content of 80-85% with total solid (TS) ranging from 15-20% and volatile solid (VS) content of 72-81%.

2.2 Experimental Set-up

Shredded organic waste was loaded into the reactor with compaction density of 600 kg/m³ together with bulking agent (bamboo cutlets). Figure 1 shows the operation conditions involved in this study. In order to start Cycle I, stabilized reactor should be generated. In this case, Reactor 1 (R1) is loaded with fresh waste and undergone bi-methanization process under combined anaerobic digestion process. This process consist of pre-stage and methane phase under mesophilic condition. Pre-stage strategy involves microaeration (0.15 L/kg.hr) and flushing as 0.75 L/kg.hr for 3 days as recommended by (Juanga and Visvanathan, 2006). Pre-stage operation enhances oxidation of organics, partially remove dissolved organic compound to reduce organic load and to avoid inhibition due to VFA and low pH condition (Nguyen et al., 2005). A detailed operation involves for R1 start-up is illustrated in Figure 2. After 3 days of pre-stage operation, the pH of the system was adjusted from 5.6 to 7.0 by using NaOH solution to help enhance for the onset of methane phase as the pH range for methanogenesis is 6.5-7.3 (Gerardi, 2003).

Moreover, inoculum was added at the top of the feedstock after pH adjustment in day 5. The seeding material (10% of substrate) consists of a mixture of cow dung, digested waste, and anaerobic sludge. In order to ensure the distribution of inoculum throughout the waste bed, leachate was percolated for 2 days. The system was left undisturbed while biogas production and composition was monitored daily. Methane composition of ≥ 50% in biogas and pH value of ≥ 7 were used as an indicator of an active methane phase. The reaction temperature for R1 has been increased gradually by 2°C/day until it reached thermophilic condition (55°C). The process was deemed necessary to avoid unbalanced situation resulting from sudden temperature change as reported by Cecchi.
et al. (2003). The gradual increase in temperature reduces stress situation without affecting biogas production. The process behaviour in transient condition was investigated and subsequent experiments were carried out in thermophilic condition.

Figure 1 Preparation of stabilized reactor and the sequencing staging operation at three cycles

Figure 2 Start-up operation in R1

2.3 Concept of Sequential Staging

To start Cycle I of sequential staging operation, a new reactor (R2) was loaded with fresh waste after pre-treatment (segregation and size reduction to 30 mm). Mature leachate from stabilized reactor (R1) was recirculated to new reactor (R2). R2 was flushed with 90 L mature leachate from old reactor (R1). The cross-circulation rate in this cycle was 3 L/min for 30 min/day. The pH of leachate and biogas composition in R2 was monitored daily. Once the pH reached 7 and methane composition was 50%, the reactor was assumed to be in active methane phase. Thus, R2 becomes an active reactor and it was uncoupled with R1. This time, an active reactor (R2) operates independently by direct leachate recirculation. After R2 exhausted its methane potential (biogas produced is very low approximately 5 L/day) and became stabilized, R3 was loaded with fresh waste for Cycle II operation. Leachate cross-recirculation at a rate of 4 L/min is conducted by coupling these reactors until the new reactor (R3) shifted to active methane phase then uncoupling is done. Similar operation was followed
for Cycle III employing R3 (stabilized) and R4 (new) for leachate cross-recirculation at a rate of 5 L/min. The variable in three cycles is the cross circulation rate as shown in Table 1.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Volume of leachate used for cross-circulation</th>
<th>Cross-circulation rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle I</td>
<td>90 L</td>
<td>3 L/min (0.34 m³/m³ waste.day)</td>
</tr>
<tr>
<td>Cycle II</td>
<td>120 L</td>
<td>4 L/min (0.46 m³/m³ waste.day)</td>
</tr>
<tr>
<td>Cycle III</td>
<td>150 L</td>
<td>5 L/min (0.58 m³/m³ waste.day)</td>
</tr>
</tbody>
</table>

2.4 Analytical Methods

Leachate samples were analyzed for pH, alkalinity, dissolved organic carbon (DOC), volatile fatty acids (VFA) and ammonium nitrogen (NH₄-N) using analytical procedures of standard methods in APHA et al. (1998). Biogas composition was analyzed by using gas chromatograph (GC-14A-SHIMADU) equipped with a thermal conductivity detector. Laboratory scale biochemical methane potential (BMP) assay based on the study of Hansen et al. (2004) was conducted to determine methane yield and performance of anaerobic digestion process. Methane yield obtained from lab-scale BMP and pilot-scale set-up are compared for determining process efficiency.

3 Results and discussions

3.1 Anaerobic Digestion Performance of R1

Cumulative pollutant load in flushed leachate after pre-stage operation generate as much as 234 g of TCOD, 196 g of SCOD, 161 g of TDS per kg of TS (Figure 3). Likewise, considerable amount of NH₄-N (18.8 g) and TKN (27.3 g) were removed per kg of TS load. Biogas production and composition was monitored daily. The volume of biogas produced is converted into standard temperature and pressure (STP) conditions (0°C and 1 atm.) for uniformity and comparison with BMP test. It was observed that after 40 days, methane concentration in biogas reached 50% and this stage was considered the beginning of mature phase. When thermophilic condition prevailed, the daily biogas production increased significantly (Figure 4). Bouallagui et al. (2004) and Valdez-Vazquez et al. (2005) found that biogas production rate in thermophilic temperature was higher than that from mesophilic condition. This is because the thermophilic micro-flora have the capacity to use several sources of carbon than the mesophilic micro-flora (Converti et al., 1999). Cecchi et al. (2003) reported an unbalanced situation was observed for few days after shifting the operating condition from mesophilic to thermophilic in short period (within 48 hours). In this study, the gradual increase of temperature (2°C/day) did not exhibit negative effect on the process particularly on daily gas production.

Figure 3 Cumulative pollutant load in leachate after pre-stage (R1)
Sequential Batch Anaerobic Digestion

The completion of each cycle operation was marked by exhaustion of biogas production. Leachate characteristics in terms of VFA concentration, is illustrated in Figure 5. The rate at which balanced condition ($\text{CH}_4 \geq 50\%$; $\text{pH} \geq 7$) was reached in fresh waste reactors depends upon two factors: the rate at which the fresh waste reactor is sufficiently inoculated by stabilized reactor and the rate at which volatile acids produced in fresh waste reactor are flushed into leachate. The increase of leachate cross-recirculation rate resulted into more rapid degradation of VFA. VFA produced in fresh reactors are removed as a substrate to stabilized reactor which converted into biogas at the same time inoculates fresh reactor producing better contact with microorganisms. As observed, VFA decreased rapidly in Cycle III. It is worthwhile to note that the start-up period decreased with subsequent cycles.

Figure 6 presents the CH$_4$ composition at three consecutive cycles. The cumulative biogas production in Cycle I and II were 5927 L and 6669 L and this corresponds to specific biogas production of 324 L/kg VS and 396 L/kg VS, respectively. Enhanced cumulative biogas production of 7763 L was generated by Cycle III. This value corresponds to 418 L/kg of VS added with 80% VS reduction. Improved methane content was exhibited by Cycle III in which the highest methane value of 70% was obtained on day 19 and remained stable.

Methane yield at each cycle was calculated as the combined methane production from fresh and stabilized waste reactors. This yield is entirely attributed by the fresh waste bed, as the stabilized waste bed was exhausted of its methane-producing potential before the start of each cycle experiment. It was observed that daily biogas production with higher methane content (Figure 6 and Figure 7) is enhanced with consecutive cycle operation and increase of leachate cross-recirculation rate improves process efficiency and shortens digestion time. In Cycle 1, the daily biogas production was fluctuating and increase during premature phase indicating that fermentation of organic was the main reaction with higher percentage of carbon dioxide in the gas. Likewise Figure 8 presents the specific cumulative biogas production for 3 cycles. Cycle II and III produce higher biogas at short digestion period of 23 and 21 days, respectively. The first cycle was perhaps not as efficient as the subsequent cycles. The highest peak of daily biogas production of around 560 L was obtained by Cycle III. Moreover, methane concentration increased sharply and after 21 days of operation, improved biogas and methane yield of 418 L/kg VS and 240 L/kg VS was generated, respectively.
Figure 5 VFA concentration in fresh waste reactors in three cycles

Figure 6 CH₄ composition in three cycles

Figure 7 Daily biogas production in three cycles
Therefore, this study shows that, within the flushing volume conducted, the degradation is a function of both kinetics and flushing rate. This experiment demonstrates higher degree of waste stabilization can be achieved as the recirculated rate increased with subsequent cycle operation which also generates high volume leachate as shown in Table 1. Mature leachate (from stabilized reactor) used for flushing the fresh waste reactor during sequencing staging operation does not only provide inoculum, nutrients, and moisture but also buffers the system to provide a favourable condition for the process. Moreover, increased flow rate may lead to less chance of short-circuiting thus providing more efficient inoculum distribution. Higher circulation rate also improves the inoculation of fresh reactor, allowing it to reach balanced condition more quickly. This finding is in line with the observation of Chugh et al. (1998) who reported that higher leachate recirculation rate; stable digester performance with increased biogas yield can be obtained.

The specific methane yield increases with subsequent cycle operation (Figure 9). Overall assessment results are summarized in Table 2. The early start-up of methanogenesis and increased methane production rates at higher leachate cross-recirculation rate could be due to increased flushing of waste bed and dilution of the inhibitory products leading to stable process performance. Although this study shows that the extent of waste decomposition improves with increase in moisture flow, the maximum volume of leachate that used for recirculation depends on the remaining volume after completion of digestion.
Upon the commencement and completion of consecutive cycle operation, process instability was not detected.

Table 2 Overall sequential anaerobic digestion process assessments

<table>
<thead>
<tr>
<th>Parameters</th>
<th>R1</th>
<th>Cycle I</th>
<th>Cycle II</th>
<th>Cycle III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total volume of biogas (L)¹</td>
<td>7226</td>
<td>5927</td>
<td>6669</td>
<td>7763</td>
</tr>
<tr>
<td>Total volume of methane (L)¹</td>
<td>3956</td>
<td>3380</td>
<td>3672</td>
<td>4439</td>
</tr>
<tr>
<td>Biogas production /kg VS input (L)¹</td>
<td>261</td>
<td>324</td>
<td>396</td>
<td>418</td>
</tr>
<tr>
<td>CH₄/kg VS (L)¹</td>
<td>143</td>
<td>185</td>
<td>218</td>
<td>240</td>
</tr>
<tr>
<td>CH₄/kg VS (BMP assay) (L)¹</td>
<td></td>
<td>294</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process efficiency (%)</td>
<td>48.6</td>
<td>62.9</td>
<td>74.2</td>
<td>81.7</td>
</tr>
</tbody>
</table>

¹ Volume expressed at STP (0°C, 1 atm.)

4 Conclusion

An experimental investigation on pilot scale sequential batch anaerobic digestion process in three consecutive cycles under thermophilic condition was investigated. This paper evaluates the effect of increasing leachate cross-circulation rates at sequential cycles with cross-recirculation rate of 0.34, 0.46, and 0.58 m³ leachate/m³ of waste per day for Cycle I, II, and III respectively. This process showed increasing specific methane yield of 184, 217, and 239 L CH₄/kg VS which correspond to process efficiency of 63%, 74%, and 82% for Cycle I, II, and III respectively. The start-up period decreased from 7 days in Cycle I to 5 days in Cycle III. Higher recirculation rates enhanced biogas production but also shorten digestion period. Therefore, thermophilic sequential batch anaerobic digestion process along with several cycles and increased recirculation rate enhanced the organic solid waste which generates high biogas yield and high process efficiency.

5 Acknowledgement

The authors wish to convey their gratitude to the Swedish International Cooperation Development Agency (SIDA) for generously supporting the financial aspects of this research. This study is part of Sustainable Landfill Management in Asia under the Asian Regional Research Program on Environmental Technology (ARRPET).

References

Anaerobic Digestion of Municipal Solid Waste in Thermophilic Sequential Batch Process

R. Adhikari, J. P. Juanga, C. Visvanathan
Environmental Engineering and Management Program
Asian Institute of Technology
Thailand

September 13-15, 2006
Increasing Trend of MSW Generation with Time

MSW generation in Thailand

- 1995: 11.5 million tons
- 1996: 12.0 million tons
- 1997: 12.5 million tons
- 1998: 13.0 million tons
- 1999: 13.5 million tons
- 2000: 14.0 million tons
- 2001: 14.5 million tons

MSW generation in Colombo, Sri Lanka

- 1995: 0.18 million tons
- 1996: 0.19 million tons
- 1997: 0.20 million tons
- 1998: 0.21 million tons
- 1999: 0.22 million tons
- 2000: 0.23 million tons
- 2001: 0.24 million tons

MSW generation in China

- 1998: 125 million tons
- 1999: 130 million tons
- 2000: 135 million tons
- 2001: 140 million tons
- 2002: 145 million tons

Municipal solid waste in Asia (ESCAP 1995)

- 1992: 500 million tons
- 2010: 2000 million tons
Potential Waste Characteristics

✓ Higher amount of organic fraction

![Bar chart showing waste composition in different municipalities] (China, India, Sri Lanka, Thailand)

- Food waste
- Miscellaneous
- Paper
- Plastics
- Metal

✓ High moisture content

<table>
<thead>
<tr>
<th>Municipality</th>
<th>Moisture (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Thailand</td>
<td></td>
</tr>
<tr>
<td>Hat Yai</td>
<td>57</td>
</tr>
<tr>
<td>Chonburi</td>
<td>59</td>
</tr>
<tr>
<td>Samutprakarn</td>
<td>65</td>
</tr>
<tr>
<td>Pattaya</td>
<td>70</td>
</tr>
<tr>
<td>In India</td>
<td></td>
</tr>
<tr>
<td>Kolkata</td>
<td>40-45</td>
</tr>
</tbody>
</table>

Need for treatment prior to landfill to stabilize the organic fraction as well as the long term emission control.
Open dumping is the most prevalent disposal method in Asia. Open dumps: No precautionary measures for potential emissions (gas and leachate).
Open Dumpsites in Asia

Gohagoda (Sri Lanka)
Chennai (India)
Shanghai (P.R. China)
Nonthaburi (Thailand)
Landfill is far better than Open dump

However, direct landfilling of waste pose long term environmental problem

Landfill and associated problems
- Ultimate destination of waste residues
- Cheap, simple but unsustainable in long term
- Environmental concerns: Air, surface/ground water problems
- Landfills are indispensable component of integrated solid waste management
Old landfill sites are exceeding their capacities, new landfills are difficult to find!

- Mass/volume reduction of MSW → better utilization of space
- High organic fraction (>60%), high moisture content in Asian MSW
- Aerobic and anaerobic biological processes: two viable biotechnologies
- Stabilization of solid waste besides mass and volume reduction

Aerobic Composting
- Odor problem, Less volume reduction
- Net energy user

Anaerobic digestion
- Less odor, more volume reduction
- Net energy producer

Anaerobic Digestion is an Environmentally benign!
Anaerobic Digestion: Fundamental Process

- **Polysaccharides**
- **Proteins**
- **Lipids**

Hydrolysis
- **Monosaccharides**
- **Amino acids**
- **Fatty acids**

Acidogenesis
- Ethanol, propionate, butyrate

Acetogenesis
- Acetate

Methanogenesis
- **CH₄ + CO₂**

Syntrophic acetogens
H₂ + CO₂

Homoacetogens

Hydrogenotrophic methanogens

Aceticlastic methanogens

Acidogens
Study Objectives

- To investigate the performance of sequential batch anaerobic digestion process at three consecutive sequential staging (cycles) under different leachate cross-recirculation rate at thermophilic condition

- To study and investigate the possibility of utilization of digestate waste for its economic value
Concept of Combined Anaerobic Digestion Process

Pre-stage

Main stage

Final stage
Concept of Sequential Staging

Anaerobic Digestion Process

Start-up phase
(Sequencing)

Balanced Phase
(Direct recirculation)

Old Reactor

New Reactor

Mature Reactor

Biogas

Leachate from new reactor

Biogas

Biogas

CH$_4$$\sim$ 50%

pH=7
Reactor Configuration

Observation glasses

2 mm thick plate

4 mm dia. at 20 mm

Air inlet

Water outlet

Leachate inlet

Spare Valve

Gas Outlet

Aluminum Foil

1 mm thick

0.5 mm thick

25 cm

62 cm

70 cm

62 cm

125 cm

260 L Working volume
Stabilized Reactor Preparation

Combined digestion process

- Pre-stage
- Start-up methane phase
- pH adjustment
- Percolation
- 200 kg waste
- 180 L
- Microaeration
- Inoculum addition

To mature phase

Sequential staging process

- Carried to Cycle I (Sequential staging)
- New reactor shifted to Stabilized reactor (Biogas exhausted)
- Carried to Cycle II (Sequential staging)
- Carried to Cycle III (Sequential staging)
- New reactor shifted to Stabilized reactor (Biogas exhausted)

Pre-stage
- Mesophilic (37°C)

Main stage
- Transient (37°-55°C)
- Thermophilic (55°C)

Stabilized reactor (Biogas exhausted)
Preparation of Stabilized Reactor and the Sequencing Staging Operation at Three Cycles

Starting-up R1 to generate stabilized reactor

Cycle I: Sequential anaerobic digestion process with leachate cross-recirculation

After 76 days, carried to Cycle I

R2
Fresh waste reactor
Stabilized reactor

After 26 days, R2 becomes stabilized reactor was carried to Cycle II

R1
Combined anaerobic digestion process
Stabilized reactor

R2
Stabilized reactor
Fresh waste reactor

R3
Stabilized reactor
Fresh waste reactor

Cycle II: Sequential anaerobic digestion process with leachate cross-recirculation

R4
Fresh waste reactor
Stabilized reactor

After 23 days, carried to Cycle III

R3
Stabilized reactor
Fresh waste reactor

Cycle III: Sequential anaerobic digestion process with leachate cross-recirculation

R4
Fresh waste reactor
Stabilized reactor

R3
Stabilized reactor
Fresh waste reactor

Visu14
Feedstock Preparation

- Waste segregation
- Shredding-Size reduction
- Weighing of waste
- Weighed waste ready for loading
- Reactor loading
The Digestion System
Sequential Anaerobic Digestion: Process details

Operating condition:
Thermophilic (55°C); Particle size (30 mm)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Volume of leachate used for cross-recirculation</th>
<th>Cross-recirculation rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle I</td>
<td>90 L</td>
<td>3 L/min (0.34m³/m³ waste. day)</td>
</tr>
<tr>
<td>Cycle II</td>
<td>120 L</td>
<td>4 L/min (0.34m³/m³ waste. day)</td>
</tr>
<tr>
<td>Cycle III</td>
<td>150 L</td>
<td>5 L/min (0.34m³/m³ waste. day)</td>
</tr>
</tbody>
</table>

Cycle I ➔ pH ~ 7; CH₄ ~ 50% (day 7)

Cycle II ➔ pH ~ 7 (day 5); CH₄ ~ 50% (day 7)

Cycle III ➔ pH ~ 7; CH₄ ~ 50% (day 5)
Results:
Pre-stage Pollutant Load Removal

Pollutant load flushed after pre-stage of combined process:
234 g TCOD/kg TS, 161 g TDS/kg TS,
Results: Main Stage Biogas Generation

- Mesophilic: Lower temperature, lower gas production
- Transient: Transition phase between Mesophilic and Thermophilic stages
- Thermophilic: Higher temperature, higher gas production

Substrate reduction

Long time inoculum acclimatization not necessary
Biogas generation: Cycle I

As the stabilized waste bed was exhausted of its methane-producing potential before the start of the experiment → Biogas production is attributed to fresh waste only.
Sequential Staging Process

Assessment

VFA dropped more rapidly in cycle III

Fresh reactor remained coupled for 5 days in cycle III compared to 7 days for cycle I & II. Methane concentration increased faster

Increased leachate circulation rate stimulates methanogenesis activities
Sequential Staging Process

Assessment

At day 21, Cycle III produced more gas than other cycles.

Within the flushing volume used, the degradation is a function of time and cross-recirculation rate.

Highest daily biogas generation (570 L)
Not only biogas yield increased but digestion time was shortened to 21 days.
Overall Process Assessment

BMP \Rightarrow 293.8 L/kgVS

<table>
<thead>
<tr>
<th>Parameters</th>
<th>R1</th>
<th>Cycle I</th>
<th>Cycle II</th>
<th>Cycle III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total volume of biogas (L)</td>
<td>7226</td>
<td>5927</td>
<td>6669</td>
<td>7763</td>
</tr>
<tr>
<td>Total volume of methane (L)</td>
<td>3956</td>
<td>3380</td>
<td>3672</td>
<td>4439</td>
</tr>
<tr>
<td>Biogas production/kg VS (L)</td>
<td>261</td>
<td>324</td>
<td>396</td>
<td>418</td>
</tr>
<tr>
<td>CH4/kg VS (L)</td>
<td>143</td>
<td>185</td>
<td>218</td>
<td>240</td>
</tr>
<tr>
<td>Process efficiency (%)</td>
<td>48.6</td>
<td>62.9</td>
<td>74.2</td>
<td>81.7</td>
</tr>
<tr>
<td>Duration (days)</td>
<td>76</td>
<td>26</td>
<td>23</td>
<td>21</td>
</tr>
</tbody>
</table>
Digestate Quality

Nutrients are intact

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>TOC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (%)</td>
<td>P (%)</td>
</tr>
<tr>
<td>Cycle III</td>
<td>2.26</td>
</tr>
<tr>
<td>Thai guideline</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Anaerobic digestion does not reduce nitrogen and phosphorus but keeps the value of nutrients intact for fertilizer.

Heavy metals within limit

<table>
<thead>
<tr>
<th>Heavy metals</th>
<th>Cd</th>
<th>Cr</th>
<th>Cu</th>
<th>Pb</th>
<th>Hg</th>
<th>Ni</th>
<th>Zn</th>
<th>Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle III</td>
<td>0.85</td>
<td>14.5</td>
<td>40</td>
<td>26.2</td>
<td>-</td>
<td>9.75</td>
<td>1.19</td>
<td>109</td>
</tr>
<tr>
<td>WHO</td>
<td>3</td>
<td>50</td>
<td>80</td>
<td>150</td>
<td>1</td>
<td>50</td>
<td>300</td>
<td>-</td>
</tr>
</tbody>
</table>

No cause of concern from Heavy metal contamination (below standards) of hand-sorted feedstock.
Conclusions

- Initial reactor was operated well under an optimized combined anaerobic digestion process wherein considerable amount of pollutant load was removed after 3 days of pre-stage operation.
- Sequential staging process performed in three cycles eliminates the need for pH adjustment, inoculum addition, and pre-stage operation.
- Gradual temperature increment at a rate of 2°C was found satisfactory to bring the mesophilic condition to thermophilic. Biogas production increased at higher operating temperature (thermophilic).
- Higher leachate cross-circulation rate resulted into more rapid waste degradation with shorter digestion time at high methane yield and improved process efficiency (82%).
- The stabilized waste residue meets the Thai guideline as proposed by Land Development Department. Moreover, the heavy metals (Cd, Cr, Cu, Pb, Ni, Zn) contained in waste is below the WHO standard limits.
THANK YOU VERY MUCH...