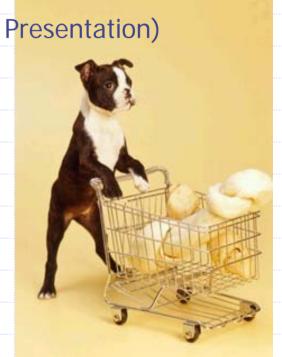
PRODUCT DESIGN & DEVELOPMENT PRESENTATION

PROJECT II FINAL DESIGN AN AUTO - PET FEEDER

Supervisor: Dr. Pisut Koomsap


Reported by GROUP 2

- Pham Bach Duong
- Nguyen Le Tuong

- Trinh Huu Phuc
- Huynh Huu Phuong

Contents

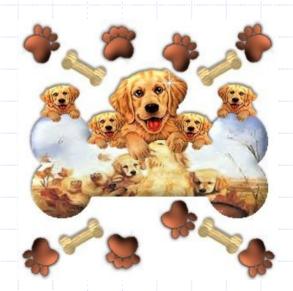
- Introduction
- Objective of the project
- Concept development process (Brief Progress Presentation)
- Process driven design
- Product architecture
- Detail design
- Prototype
- Design for manufacturing
- Testing and refinement
- Demonstration

Introduction

- Company ThinkPet®
 - Established in 2002
 - Designs & develops PET related products
- Main products
 - Pet households.
 - Pet entertainment.
 - Pet feeder.
- The company's development team is designing and developing the pet feeder model PFD01

Objective of the project

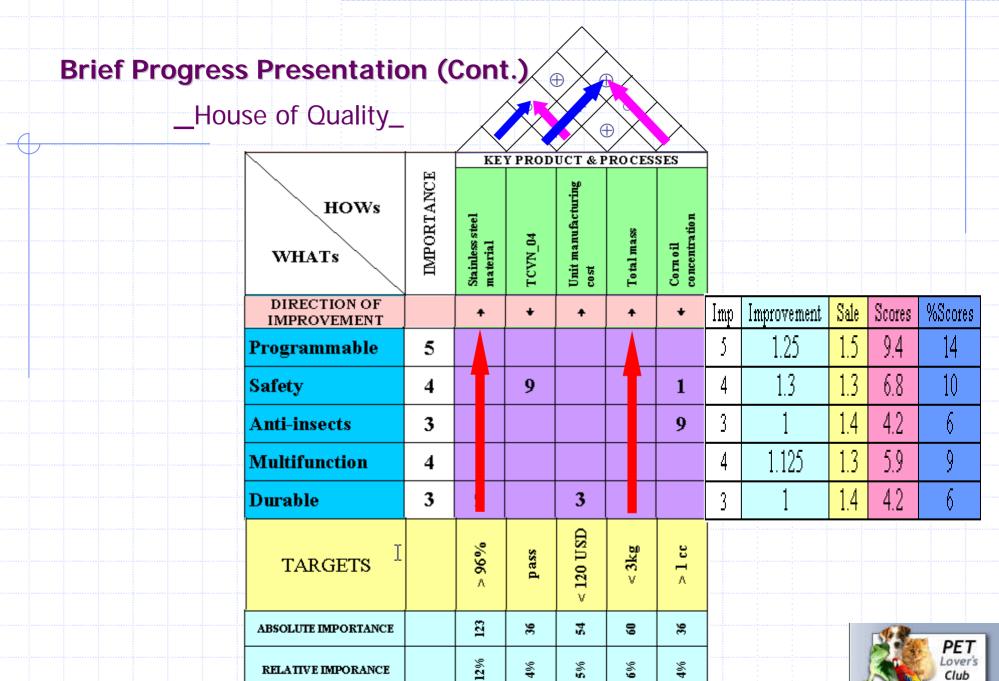
Brief Progress Presentation

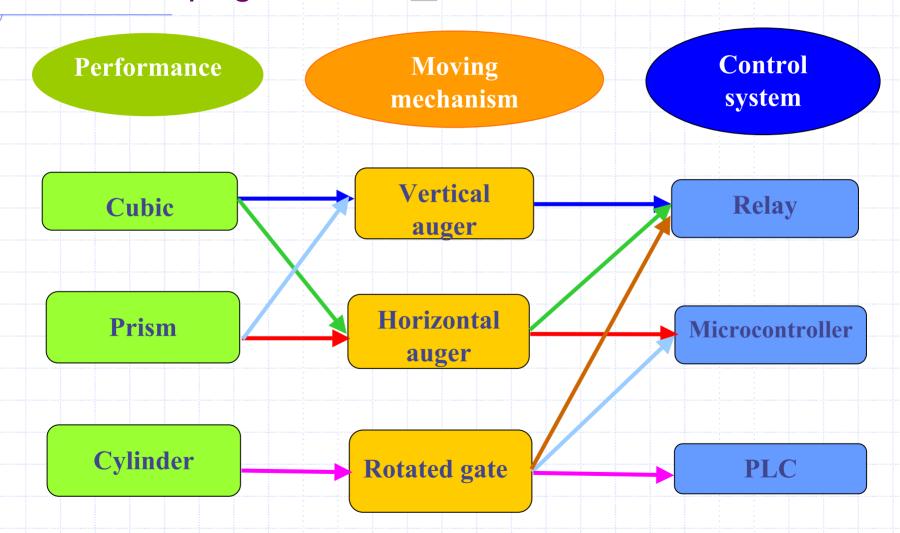

Mission statement

Product description:

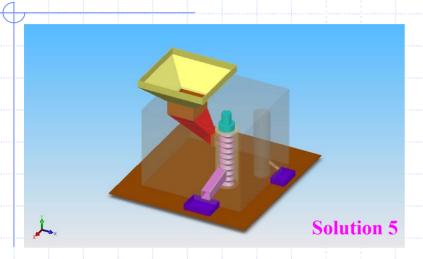
7 days Programmable Automatic Pet Feeder for small – medium dogs and cats

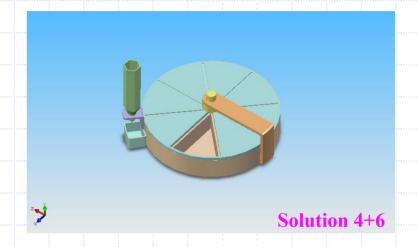
Assumptions and constraints:

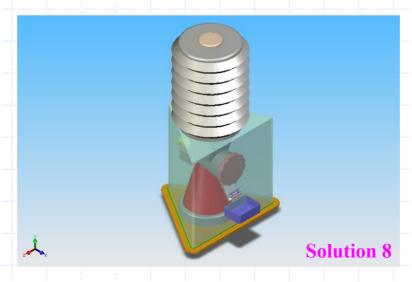

- Both supply food and water
- Programmable ability
- Affordable price
- Portability
- Easy installation and removal


Survey customer needs

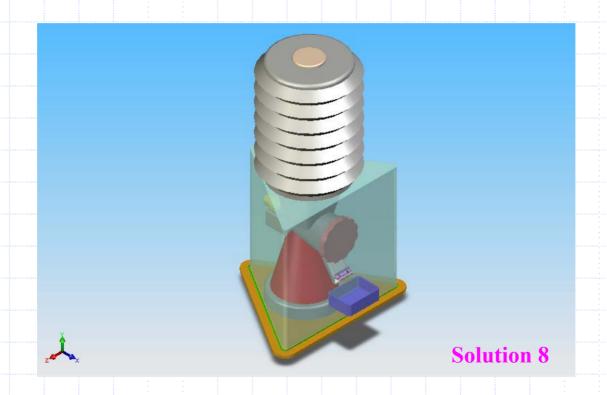
- Methodology: interview and written survey
- Customer selection matrix


Maylest samuent	Customer types							
Market segment	Lead Users	Users	Retailers					
Busy, on-the-go pet owners	8	3	3					
The elderly and handicapped	5	5	2					
Children	0	4						




Concept generation__Combination table

_ Concept candidates _



Concept selection (Cont.)

Concept scoring

	_	Concept						
					Select	ion 4 + 6		
Selection criteria	Weight	Rating	Weighted score		Rating	Weighted score		
Performance	10%	2	0.2		1	0.1		
Ease of use	20%	3	0.6		3	0.6		
Reasonable price	20%	3	0.6		2	0.4		
Durability	30%	3	0.9		2	0.6		
Portable	10%	2	0.2		3	0.3		
Programmable	10%	3	0.3		4	0.4		
	Total score]	1.54			2.4		
	Rank	3		3				2
	Continue?		No	<u> </u>		No		

_ Selected concept _

Process Driven Design

Develop manufacturability design goals

- Minimize the number of parts and separate operations
- Program, assemble and operation test the electronic components with existing assembly lines
- Use the standard components and fasteners such as IC, DC motor, screws,...

Develop manufacturability design goals

- The division between standard and designed components
- The product architecture
- The assembly concept with assembly structure is frame-based construction
- Basic material and process classes for key components: choose
 Material first approach

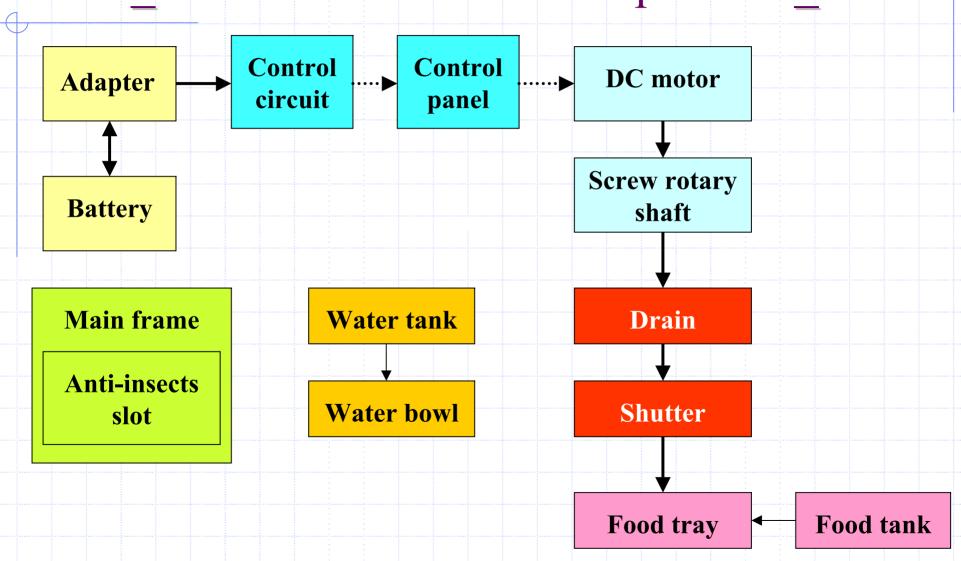
Process Driven Design (Cont.)

Material and Process selection _

Consider Application Requirements **Select Feasible Material Class Select Candidate Process Types Consider Part** Requirements **Select Feasible Process Type**

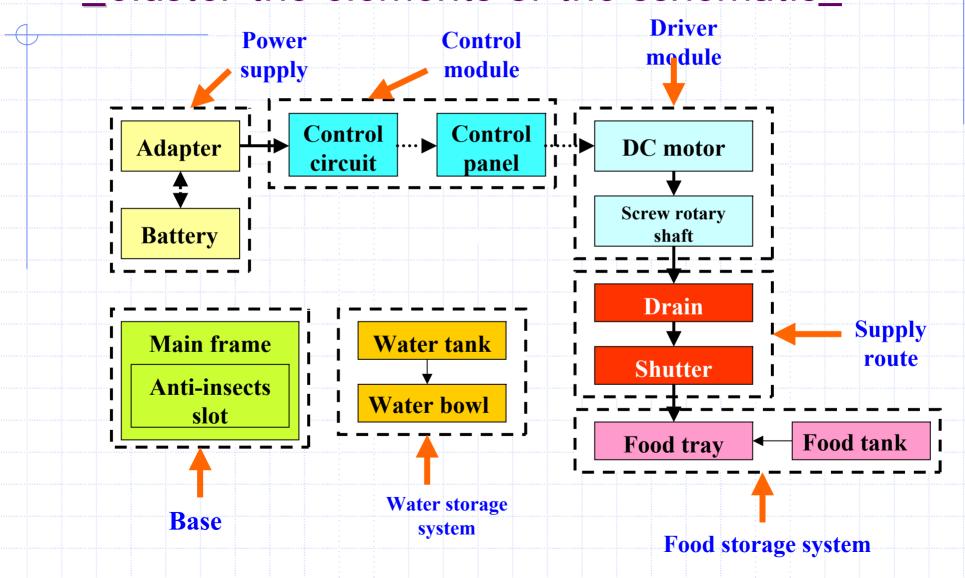
Prototype, no load

PVC, stainless steel, mica, rubber

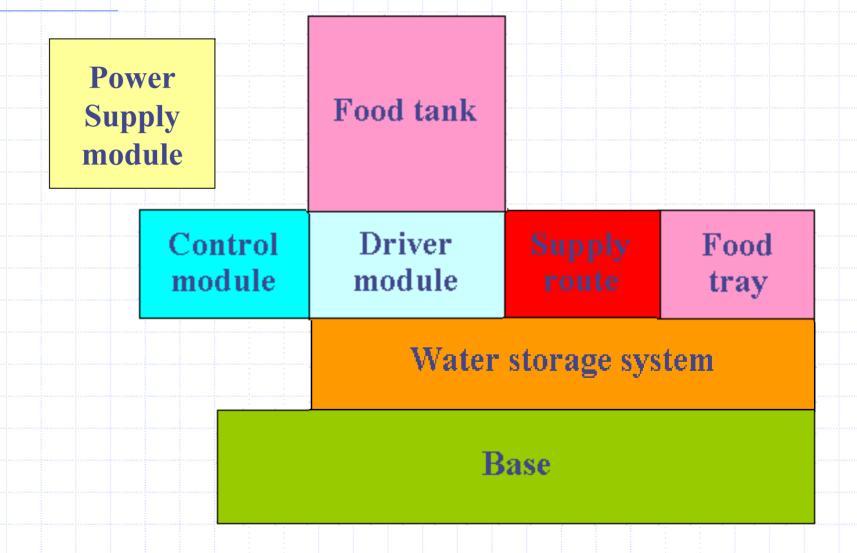

Extruding, tapping, shaping, turning, welding, cutting, grinding

Prototype only

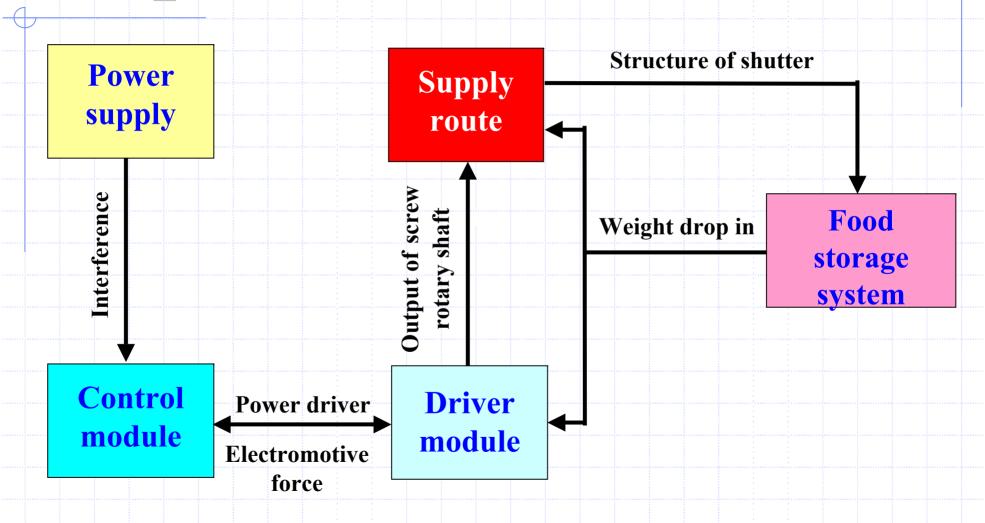
Shaping, tapping, cutting, welding


Product Architecture

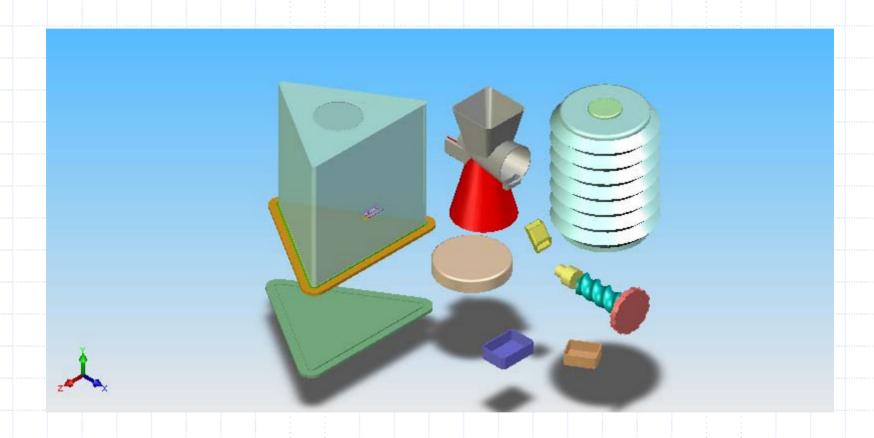
_Create schematic for the product _


Product Architecture (Cont.)

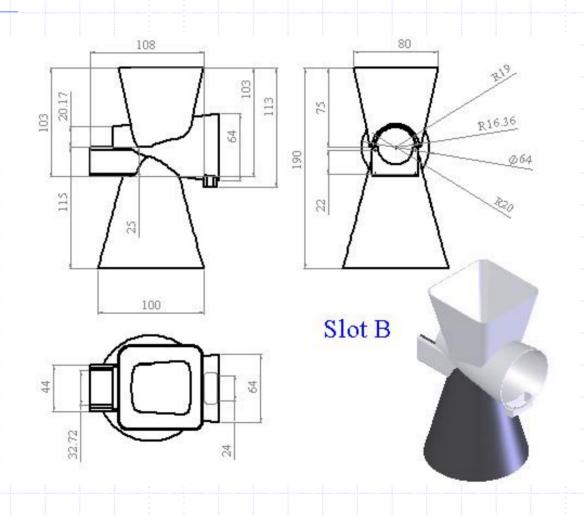
Cluster the elements of the schematic

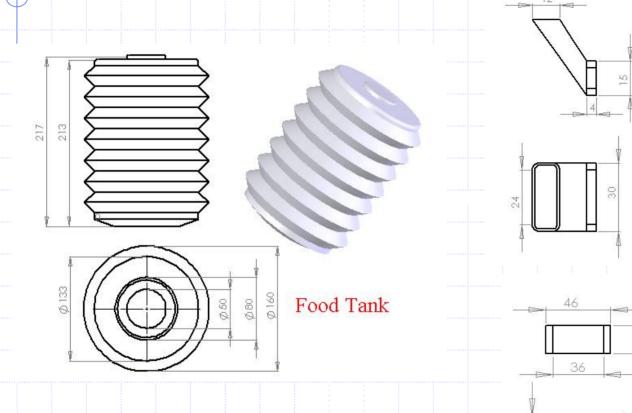

Product Architecture (Cont.)

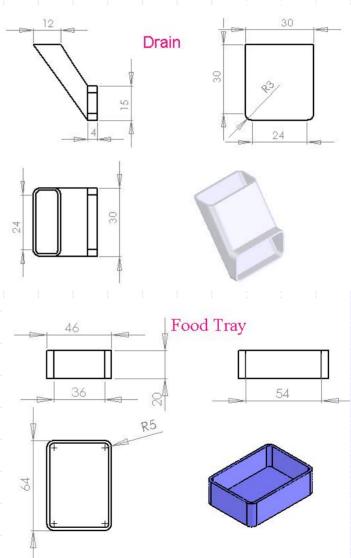
Create a rough geometric layout

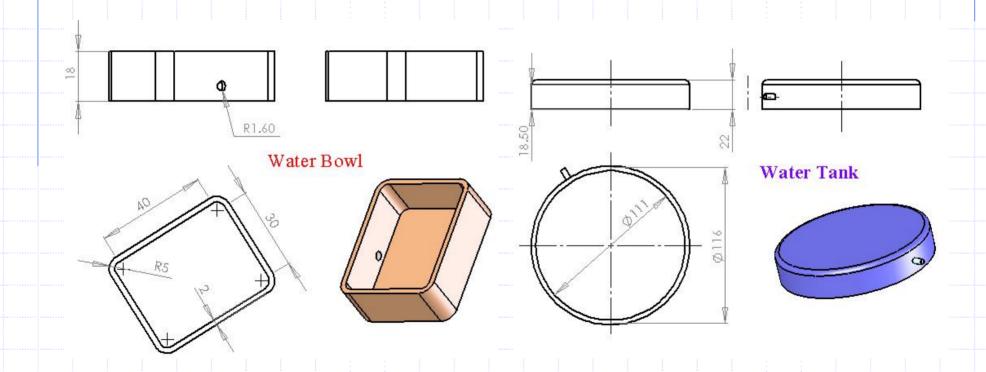


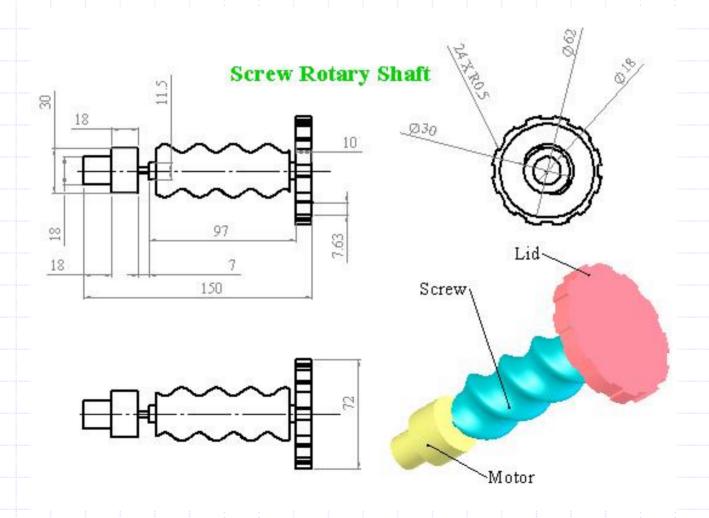
Product Architecture (Cont.)

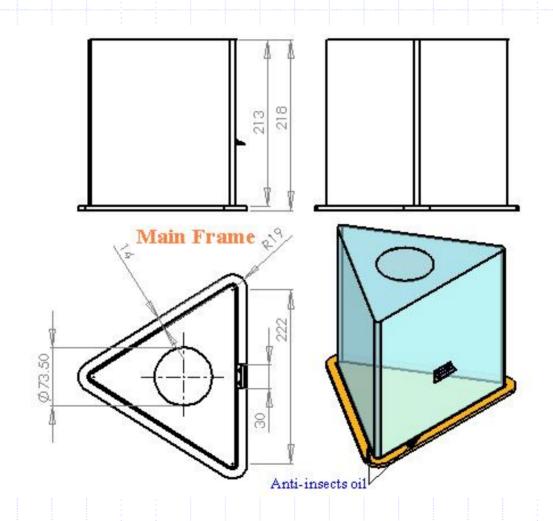

Identify the incidental interactions_

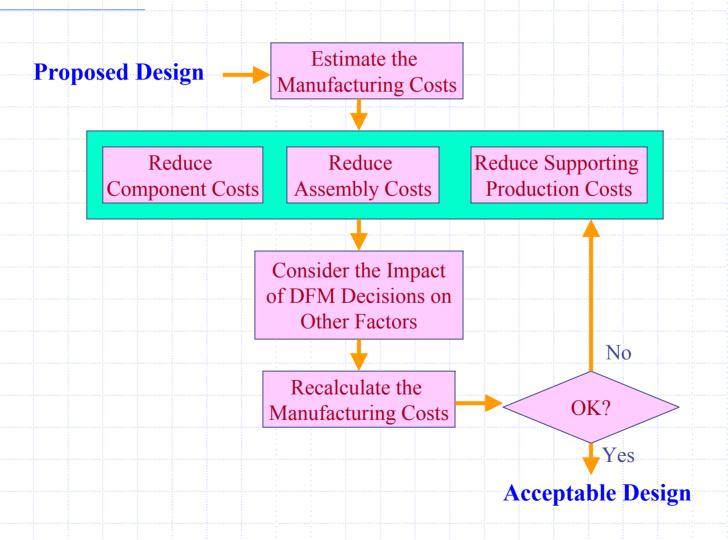



Detail Design




Detail Design





Design for manufacturing

DFM Methodology

Design for manufacturing (DFM) <u>Manufacturability Analysis Worksheet</u>

Part or Operation	Qty	Type
Main frame	1	2
Water tank	1	2
Slot base	1	2
Drain	1	2
Screw rotary shaft	1	2
Control circuit board	1	2
Adapter	1	2
Top cover	1	2
Shutter	1	2
Control panel	5	2
Food tank	1	2
Food tray	1	2
Water bowl	1	2
Roof	1	2
Handle	1	2
Small tank	1	2

Assembly					
Н	I	S	С		
-	0	0	+		
0	0	0	+ + 0		
+	+	0 + 0	+		
0 + +	+	0	0		
0	0	1	1		
+	1	0	1		
0	0	0	0		
0 + +	0 +	0 + 0	0 +		
+	+	0	0		
+	0	0	-		
-	+	+	+		
+	+	+	+		
+ + +	+	+ + +	+		
+	+	+	+		
+	+	0	+		
0	+	+	+		

El	Part Elimination					
Motion	Mat'l	Ass'y	CFE			
N	Y	Y	0			
N	Y	Y	0			
N	N	Y	0			
N	N	Y	0			
Y	N	Y	0			
N	Y	Y	0			
N	Y	Y	0			
N Y	Y Y N	Y	0			
Y	N	Y	0			
N	Y	Y	0			
N	N	Y	0			
N	Y	Y	0			
N	Y	Y	0			
N	N	Y	0			
N	N	Y	0			
N	Ν	Y	0			

	Assessment					
v	М	ш	Note			
0	0	0				
0	0	0				
0	0	0				
0	0	0				
0	ı	0				
1	+	0				
0	+	0				
	0	0				
0	0	0				
3	+	0				
0	0	0				
0	0	0				
0	0	0				
0	0	0				
0	0	0				
0	0	0				

Design for manufacturing (Cont.)

Manufacturability Analysis Worksheet

			 A	Assei	mbly	7	 E		art natio	n		Ass	essm	ent
Part or Operation	Qty	Type	 Н	I	S	C	 Motion	Mat'l	Ass'y	CFE	 V	M	UI	Note
Main frame	1	2	 -	0	0	+	 N	Y	Y	0	 0	0	0	
Water tank	1	2	 0	0	0	+	 N	Y	Y	0	 0	0	0	
Slot base	1	2	 +	+	+	+	 N	N	Y	0	 0	0	0	
Drain	1	2	 +	0	0	0	 N	N	Y	0	 0	0	0	
Screw rotary shaft	1	2	 0	0	-	-	 Y	N	Y	0	 0	-	0	

 $\sum \mathbf{Qty} = \mathbf{20}$

 $\sum \mathbf{CFE} = \mathbf{0}$

Design for manufacturing (Cont.)

Evaluating the DFM

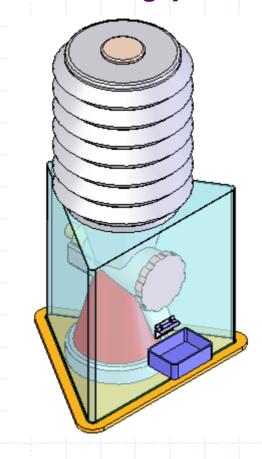
$$Count_ratio = \frac{\Sigma Qty - \Sigma CFE}{\Sigma Qty} = \frac{20 - 0}{20} = 1$$

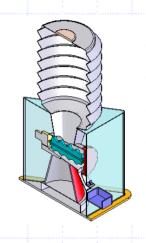
With this count ratio, we have made a good design for auto pet feeder.

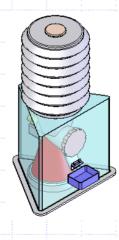
$$Value_ratio = \frac{\Sigma(2 \& 3_Value_Rating)}{\Sigma Qty} = \frac{2}{20} = 0.1$$

The value ratio is close to zero. It is not good because almost parts are new design, it takes long time to make.

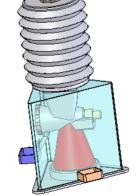
Therefore we try to trade off all elements to get the better results


Bill of Material (BOM)


No.	Part name	Unit	Quantity	Material	Standard
1	Food tank	pcs	1	PVC	
2	Water tank	pcs	1	PVC	
3	Food tray	pcs	1	Stainless steel	
4	Water bowl	pcs	1	Stainless steel	
5					
6	Anti-insects oil	cc	1		
7					
8	Shutter	pcs	1	PVC	
9	Motor	nos	1		Bristish
9	William	pcs	1		standard
10	Control circuit board	pcs	1		TCVN
11	Switch	pcs	5		
12	Screw rotary shaft	pcs	1		
13	Screws	pcs	12		
14	Gasket	set	1	Composite	
				plastic	
15	Adapter	pcs	1		TCVN
16	Battery	pcs	1		TCVN
17	Accessories	set	1		
	ional				
18	Roof	pcs	1	PVC	
19	Handle	pcs	1	PVC	
20	Small tank	pcs	1	PVC	


Bill of Material with estimated cost

1	•	Part name	Purchased materials	Processing (Machine +Labor)	Assembly (Labor)	Total unit variable cost		
	1	Food tank	1.75	1	0.1	2.85		
	2	Water tank	1.5	0.75	0.1	2.35		
	2							
	4	Water bowl	1.25		0.15	1.4		
	5	Main frame	7		0.5	7.5		
	б	Anti-insects oil	0.25		0.05	0.3		
	7	Drain	0.3	0.2	0.1	0.6		
	8	Shutter	0.8	0.4	0.1	1.3		
	_							
	10	Control circuit board	3		3	6		
	l1	Switch	1		0.5	1.5		
1	12	Screw rotary shaft	4	2.3	0.75	7.05		
	13	Screws	0.5		0.2	1.7		
1	l4	Gasket	0.5		0.2	0.7		
1	l5	Adapter	2		0.1	2.1		
1	lб	Battery	6		2	8		
	l7	Accessories	3		0.5	3.5		
C	Optional							
	18	Roof	1.5	0.5		2		
	19	Handle	0.5	0.2		0.7		
2	20	Small tank	1	0.6		1.6		
					Total Cost	54.25		


Prototype

Prototype (Cont.) Physical prototype

Testing and Refinement Faced problems _ Solutions_Adjustment

Problem 1: Control circuit

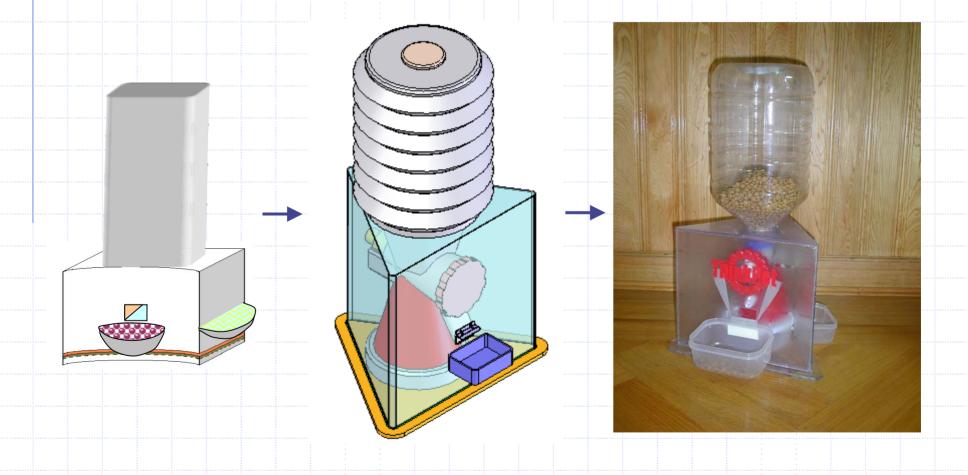
Problems	Solution
•Timer operation is inaccurate, so the cycle of machine has some errors.	Checking and repairing the circuit. Programming IC again.
•Falling power.	Increasing the power of the power supply. Checking the short circuit

Testing and Refinement (Cont.) Faced problems _ Solutions_Adjustment

Problem 2: Drain and shutter

Problems	Solution
•The declination is unsuitable.	
→ Food is got stuck or thrown out combust the	Adjusting the angle.
motor	

Testing and Refinement (Cont.) Faced problems _ Solutions_Adjustment


Problem 3: Motor

Problems	Solution
 Large power motor. → Waste the electrical energy and increase power driver. 	Changing the motor. Reducing the power motor.
•Horizontal axis between the motor and screw rotary shaft is not coincident.	Adding the gaskets. Correcting the joints.

Conclusions

- Up to now, we elementarily complete designing the auto pet feeder, model PFD01, with prototype as demonstration.
- We also concentrate to optimize design and development processes for creating the best perfect auto pet feeder, with the best reasonable price.

Conclusions

Coming soon

- Enable voice communicate.
- Alternated dishes.
- Check if the pet leave the meal.
- Camera add-in.

THANKYOU FOR

YOUR ATTENTION!

