AUTOMATIC ORNAMENTAL FISH FEEDER

Instructor: Dr. Pisut Koomsap

Students: Nguyen Anh Tuan Vu Thang Long Tran Minh Thuan Phan Thi Huyen Chau

Presentations Contents

I. Introduction

- 1) Objective
- 2) Product Planning

II. Concept Development

- 1) Customer Needs
- 2) House of Quality
- 3) Concept Generation
- 4) Concept Selection

Presentations Contents (cont)

III. Product Development

- 1) Manufacturability Design Goals
- 2) Schematic of The Product
- 3) System design
- 4) Key Components
- 5) Chunks
- 6) Alpha Prototype
- 7) Design For Manufacturing

IV. Demonstration

INTRODUCTION

Objective

Ornamental fishes

Automatic feeder for fishes fed in family, bar, restaurants, hotels and shops.

Objective (cont)

Kinds of fish food

Powder and tablet fish foods are concerned

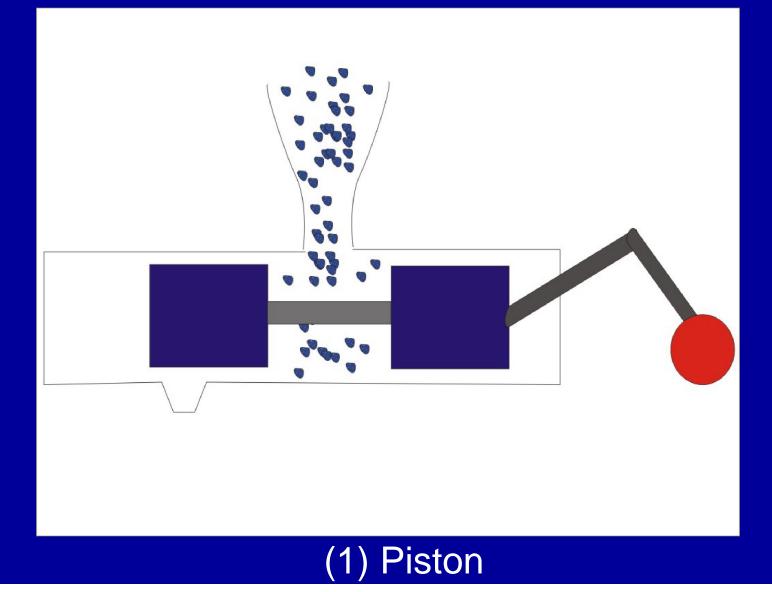
Product Planning

Investigate the market

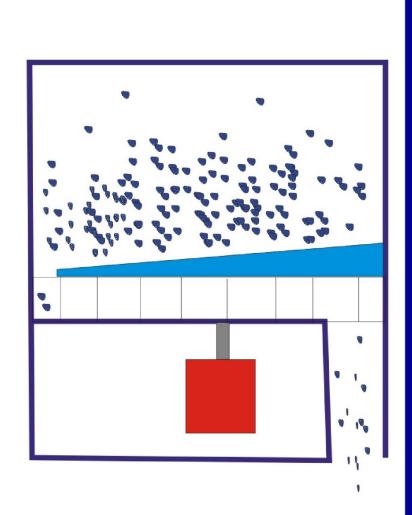
The existing fish feeders are expensive and less function

Product Planning (cont)

- Mission statements:
 - Reliable, safe, expandable, portable compact and cheap Aquarium Feeder (AF).
 - Primary market: Vietnam
 - Secondary market: Overseas
 - Business goals: Complete and release the final product within 8 weeks. 10,000 products will be sold each year.

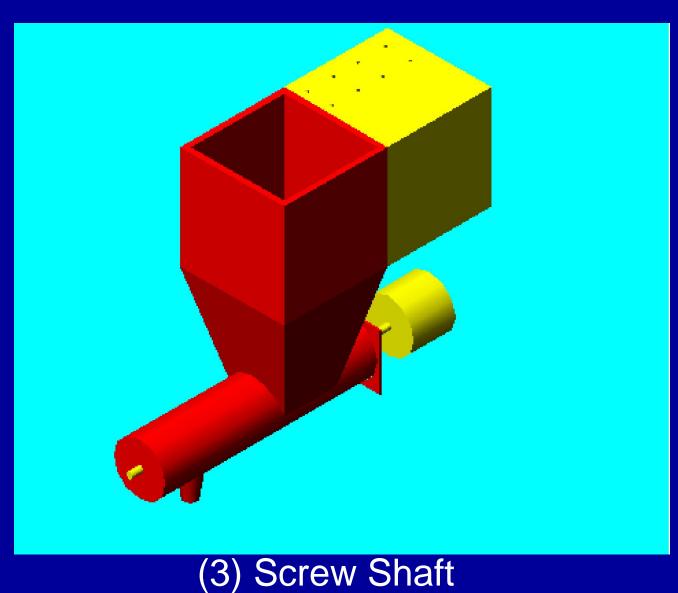

CONCEPT DEVELOPMENT

Customer Needs

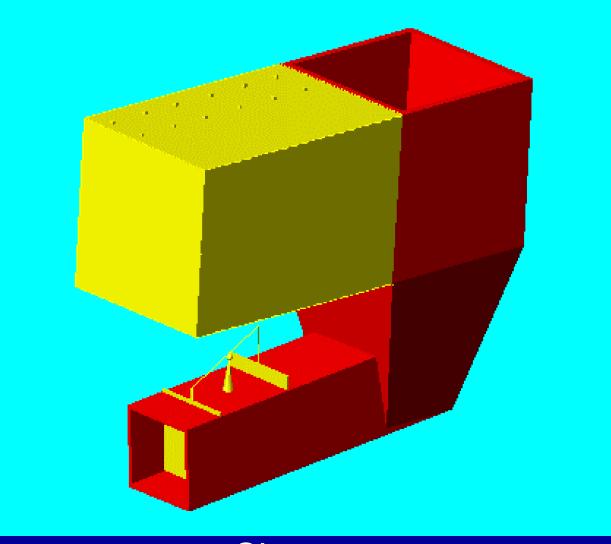

No.	Customer needs	Imp.
1	Multi time point organizer	5
2	Small size.	4
3	Controllable quantitative module	5
4	Adapter.	3
5	Plastic material.	3.5
6	Buzzer	3
7	Illumination	4
8	Cleaner	3.5

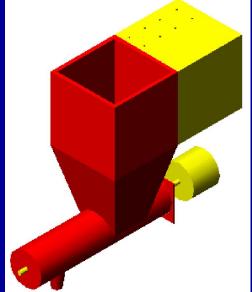
House of	J.	Dimension	DC Motor	AC-DC Adapter	Flexural Strength	ker	t	е			
Quality	Timer	Dime	DCI	AC-I	Flex	Speaker	Light	Mode	it ratio		score
	9							3	emen	ore	ized
		9							Improvement ratio	Sale point Raw score	Normalized score
Multi time point organizer	9		9					3		1.4 7.9	
Small size.				9					1.0	1.0 4.0	
Controllable quantitative					9					1.3 7.3	
Adapter.					2					1.1 4.4	
Plastic material. Buzzer						9				1.0 3.	
Illumination							9			1.3 11.3 1.3 15.0	
Cleaner			3					9		1.2 4.2	
Total %	233	61	134	68	54	180	240				6 100.0
Rank	21	5.5	12	6.1	4.8	16	22	13			
	2	7	5	6	8	3	1	4			

Concept generation



Concept generation (cont)



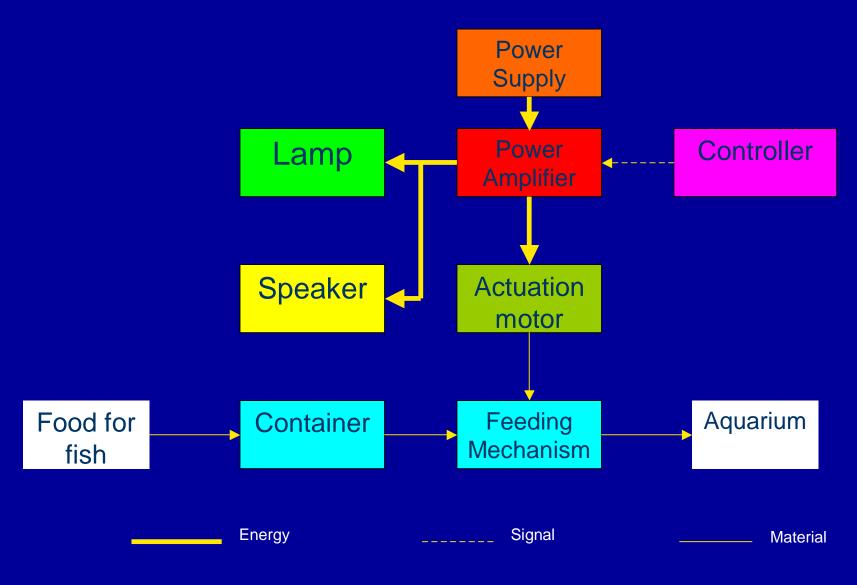

Concept generation (cont)

Concept generation (cont)

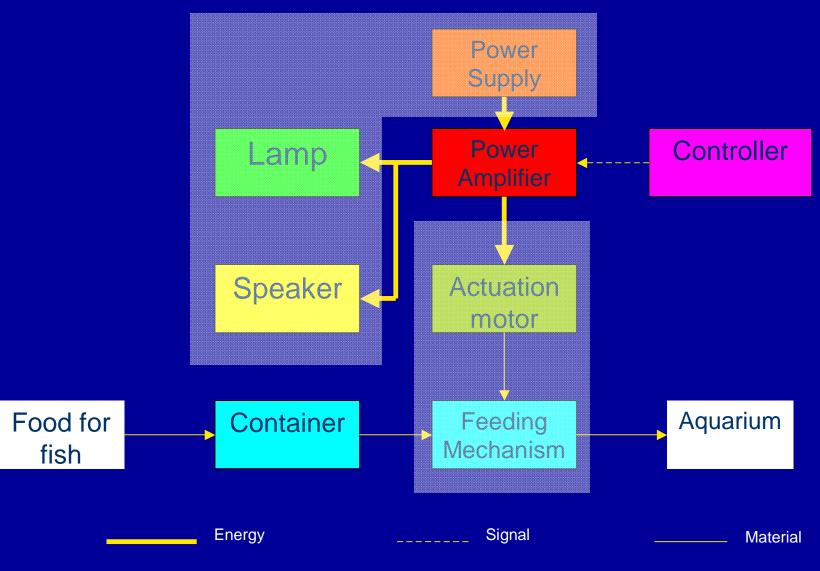
Concept Selection

Concents

		Concepts															
			1		2	3	3	2	1	5(r	ef)	(6		7		8
	Weight	Rating	Weight Score	Rating	Weight Score	Rating	Weight Score	Rating	Weight Score	Rating	Weight Score	Rating	Weight Score	Rating	Weight Score	Rating	Weight Score
Multi time point organizer	25	5	125	5	125	3	75	3	75	3	75	3	75	4	100	4	100
Small size.	5	4	20	3	15	4	20	3	15	4	20	3	15	4	20	3	15
Controllable quantitative module	25	5	125	5	125	3	75	3	75	3	75	3	75	4	100	4	100
Adapter.	10	4	40	4	40	4	40	4	40	4	40	4	40	4	40	4	40
Plastic material.	5	3	15	3	15	3	15	3	15	3	15	3	15	3	15	3	15
Buzzer	10	3	30	3	30	3	30	3	30	3	30	3	30	3	30	3	30
Illumination	10	3	30	3	30	3	30	3	30	3	30	3	30	3	30	3	30
Cleaner	10	4	40	3	30	2	20	2	20	3	30	3	30	3	30	3	30
Total score	100	4	25	4	10	30)5	300		315		310		3	65	260	
Rank			1		2	e	5	7	7	2	1	ļ	5		3	8	8
Continue?		Dev	elop	Ν	No	N	0	N	lo	N	0	N	lo	Ν	lo	Ν	lo

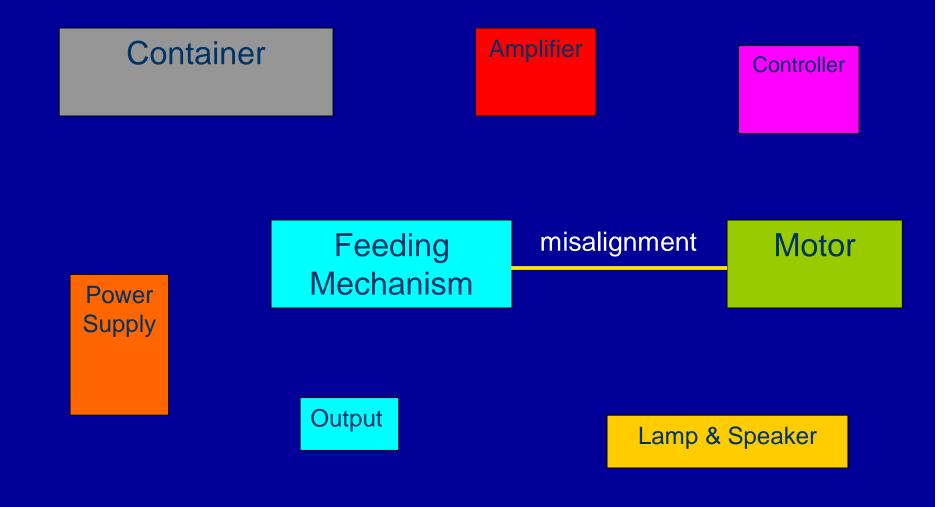

The concept Screw Shaft is chosen to develop

PRODUCT DEVELOPMENT


Manufacturability Design Goals

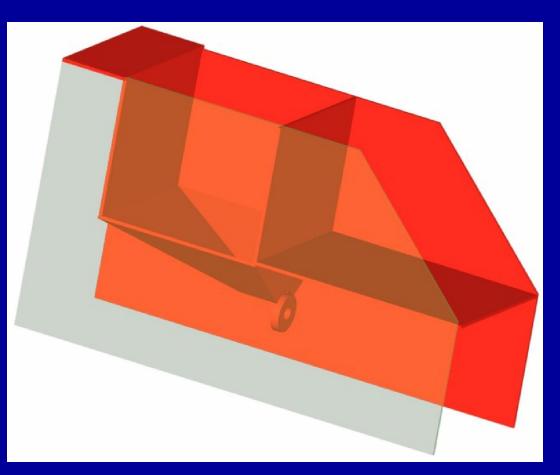
- 1. Minimize the number of parts
- 2. Simplify part types
- 3. Minimize and simply assembly steps
- 4. Use conventional manufacturing constraints
- 5. Employ manual labor
- 6. Modularize components
- 7. Easy to maintenance
- 8. Easy to use

Schematic of The Product


Cluster The Elements

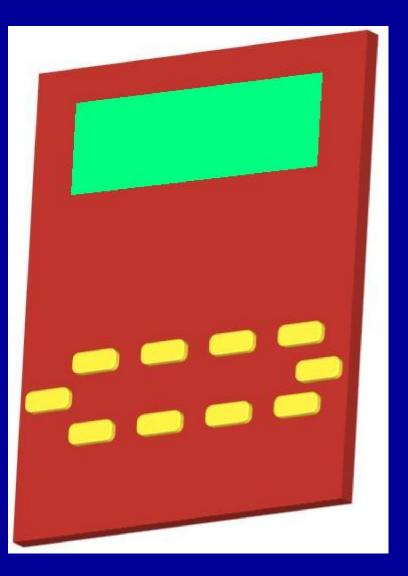
Geometric Layout

Сс	ontaine	Amp	lifier	Controller				
Power Supply		eding hanis						
	Output	Lam	p & Sp	beak	er			

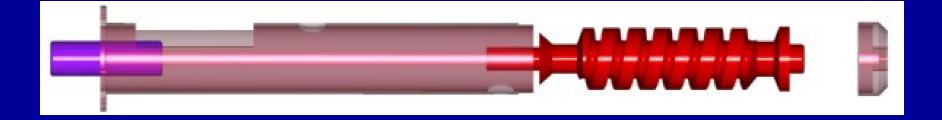

The fundamental and incidental interactions

Key Components

1. Container and Frame


- Nylon 6,6
- Manually molding

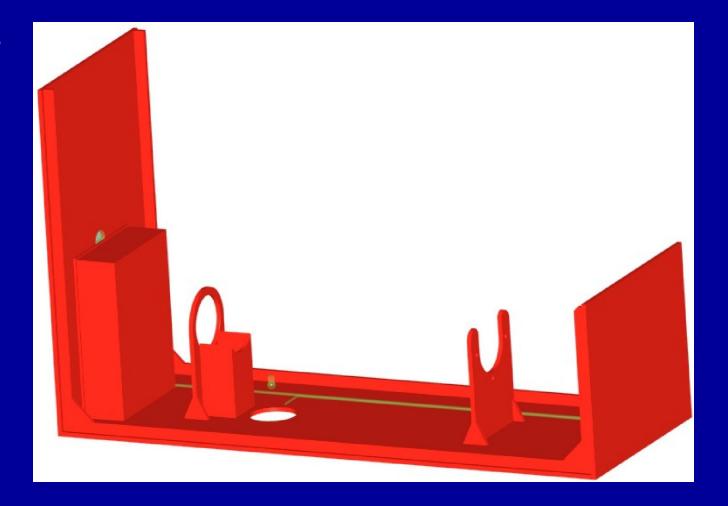
Key Components (cont)


2. Controller

- Designed from available electric components.
- Manually assembling

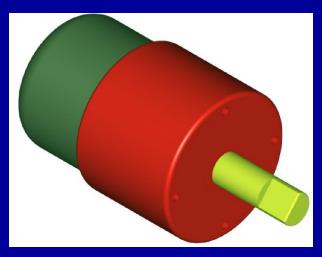
Key Components (cont)

3. Feeding Mechanism

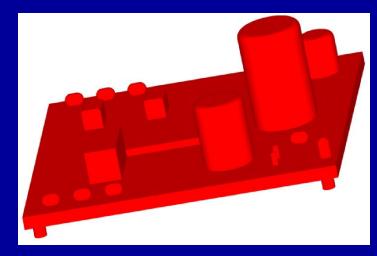


- Nylon 6,6
- Manually molding is used for all sub-components
- Sub-components are assembled by stack method.

Key Components (cont)


4. Bottom Piece

- Nylon 6,6
- Manually molding



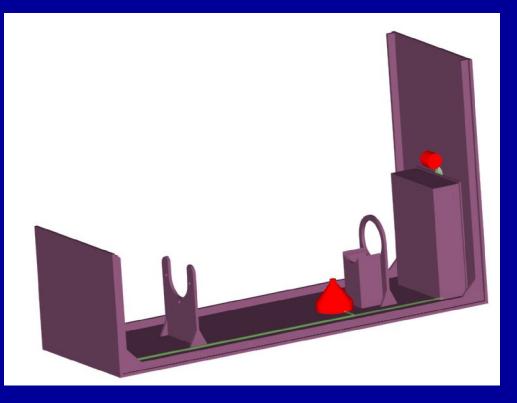
Other Components

DC Motor

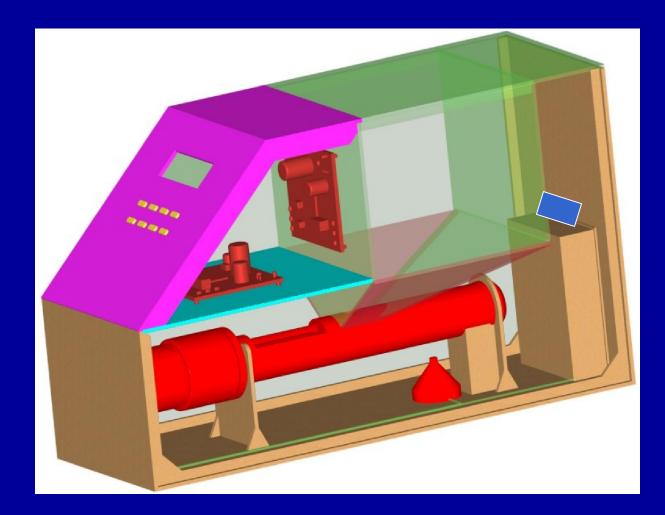
Amplifier

Take a glance at some components.

Chunks


1. Transportation Chunk

- Including feeding mechanism, DC motor and glands.
- <u>Assembly method</u>: Using fasteners to attach DC motor and feeding mechanism.


Chunks (cont)

2. Bottom Chunk

- Including bottom piece, lamp and speaker
- Assembly method: Insertion

Theoretical Alpha Prototype

Physical Alpha Prototype

Testing

• Technique aspect

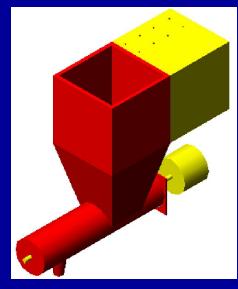
Specification	Testing method	Parameter	Eff.	Eval.
Motor	Work with no load Work with load	Rpm Rpm	90% 80%	Good Fair
Timer	Times Schedule Amount of time	Times per day Work on time or not feeding period	100% 100% 100%	Good Good Good
Speaker	Run or not		100%	Good
Light	Run no not		100%	Good
Transportation	Dosage	Grams per second	90%	Good

Testing (cont)

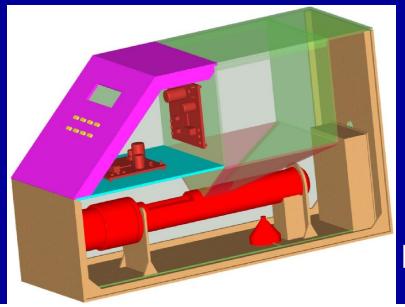
• Customer aspect

Specification	Testing method	Parameter	Eff.	Eval.
Transportati on	Dosage	Grams per second	90%	Good
Keyboard	Press keys correspond to their mode		95%	Good
Food types	Pour to the container	Powder and tablet type	90%	Good
Safety	Measure insulated resistors	ΜΩ	100%	Good

Design For Manufacturing


		Assembly					F	Assessment						
Part	Qty	т	н	I	S	С	Mo.	Mat.	Ass.	CFE	V	М	UI	
Cover		1	+	0	0	+	no	no	no	1	0	+	0	
Controller		1	0	0	0	+	no	no	no	1	0	+	0	
Screw	1	2	-	+	+	+	yes	yes	yes	0	0	+	-	
Bearing		1	-	0	0	+	yes	no	no	1	0	+	-	
Casing	1	2	-	0	0	+	yes	yes	yes	0	0	+	-	
Coupling	1	1	-	0	+	+	yes	yes	yes	0	0	+	-	
Gland	1	2	-	+	+	+	yes	yes	yes	0	0	+	-	
Lamp	1	2	+	0	0	+	yes	yes	yes	0	2	+	0	
Speaker	1	2	+	0	0	+	yes	yes	yes	0	2	+	0	
Amplifier	1	1	0	0	0	+	yes	yes	yes	0	2	+	0	
Cap	1	2	+	0	0	+	yes	yes	yes	0	0	+	0	

Design For Manufacturing (cont)


Count – Ratio = 8/11 = 0.7272Value- Ratio = 6/11 = 0.5454Separate- operation- ratio = 0Separate- fastener- ratio = 4/11 = 0.3636

<u>Conclusion</u>: With DFM process, we see that some components must be eliminated in beta prototype because the CFE value is larger than one.

Conclusion

Concept

Design

Prototype

Conclusion

Our project started at a step of customer needs then establishing the specification, concept generation, concept selection, setting up product design objectives, product architecture, product design, prototype making, and ended at testing and refining product. We conform closely to this process to create AF prototype.

Hence, our AF prototype has both compulsory and amazed- customer function

We believe in developing AF to become a commercial product with big potentiality such as: to get a lot of profit and to enlarge domestic and international market

THANK YOU FOR YOUR ATTENTION!

QUESTION?

DEMONSTRATION