

AT73.06: Product Design and Development

Final Presentation & Demo of Prototype

Project 2: Designing & Manufacturing of a Coin Sorting Machine

Product Development Team

Mr. Amit Kumar Mr. Suchart Nachaisit Mr. Jakra Tandhavatana

Presentations Contents

- 1. Objective of the Project
- 2. Brief about Progress Presentation
- 3. Process Driven Design Phase
- 4. Product Architecture of Coin Sorter
- 5. Detail Designing
- 6. Design for Manufacturing
- 7. Prototype Manufacturing
- 8. Testing of Prototype
- 9. Refinement
- 10. Demo of the Prototype

Objective of the Project

10 Baht

5 Baht

1 Baht

50 Satang

25 Satang

Mission Statement

Product Description : Portable, trustful and compact Coin Sorter

Primary Market : Household Purpose

Customer Survey Summary

No of customer included = 12

Customer Needs	Survey Result				
My sorter must perform correctly at each time	YES – 12	NO - 0			
My sorter must be safe for children	YES – 12	NO - 0			
I want to start my sorter by pressing button	YES – 12	NO - 0			
I want to carry my sorter at any place	YES – 7	NO – 5			

Customer need & Importance

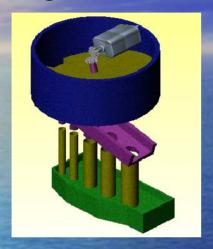
Need – Metrics Matrix

HOQ

<u>House</u> <u>of</u>									
<u>Ouality</u>	Speed	Machine cap.	Repeatability	Accuracy	Importance	Imp. ratio	Sales point	Scores	% Scores
Stacking of coins	9	9	3	3	5	1	1.2	6	7.48
Counting of coins	3	1	9	9	5	1	1.2	6	7.48
Reliability of M/C	9	9	9	9	5	1	1.3	6.5	8.10
Fast operation	9	3	3	3	4	1	1.1	4.4	5.49
Total score	319	318	215	212					
% Imp. score	11.7	11.6	7.84	7.7					

Analysis of HOO

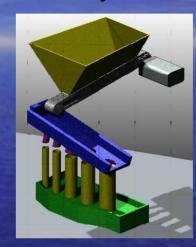
percentage importance of product specification

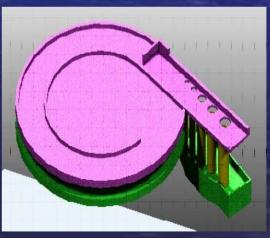

1.	Speed of coin sorter machine (coin/minute)	11.7 %
2.	Machine capacity (No. of coin/single drop)	11.6 %
3.	Repeatability	7.84 %
4.	Accuracy	7.70 %

Concept Generation: Concept Combination Table

External Energy	Moving of coins	Sorting of coins one by one
Rotary Motor with Transmission	Belt Conveyor	Holes along the coin movement
Manually Operated Handle with Transmission	Bowl Feeder	Photo Detector
Magnetic Vibration	Roller Feeder	Weight Detector
	Rotating Plate with Slot	

Potential Concept


1. Rotating Plate Coin Sorter



3. Roller Coin Sorter

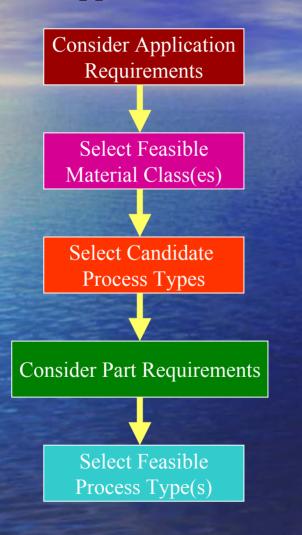
2. Belt Conveyer Coin Sorter

4. Bowl Feeder Coin Sorter

Concept Selection: Concept Scoring Matrix

Process Driven Design Phase

1. Manufacturability Design Goals


- Minimize the number of parts (e.g. Fasteners)
- Manufacturing Constraints Conventional Process to be used
- Standard DC Motor, and Fasteners.

2. Product and Process Plan

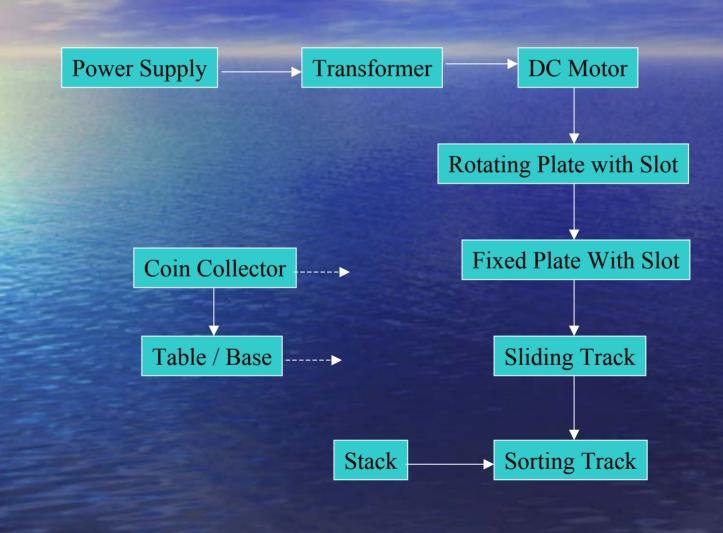
- Division between standard and designed components
- Product architecture.
- Assembly Concept Stacked construction
- Material and Process class for key component First Material Approach

Process Driven Design (Contd)

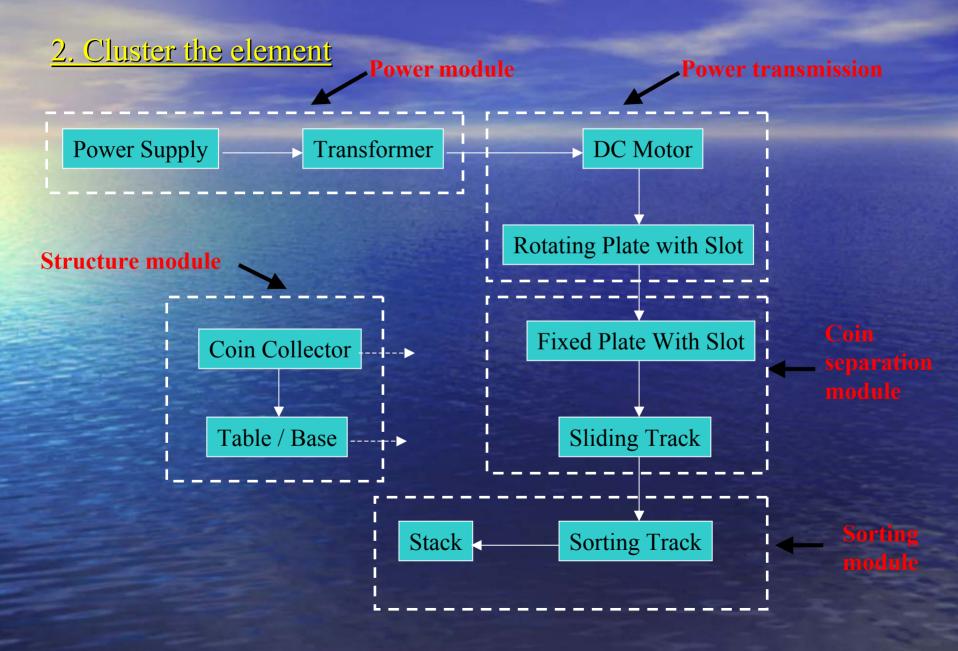
<u>Material-First Approach</u>

Prototype, no load, no wear

Acrylic, Aluminum, PVC


Turning, Drilling, Tapping, Milling Boring, Sheet Metal, Shaping

Prototype, Not for mass production


Drilling, Turning, Tapping, Milling

Product Architecture

1. Schematic of the coin sorter

Product Architecture (Contd)

Product Architecture (Contd)

Chunks

- 1. Power module
- 2. Power transmission
- 3. Coin separation module
- 4. Sorting module
- 5. Structure module

Each Chunk designed by a different Group / Vendor

3. Rough geometric layout

Power Supply Module

Power Transmission Module

Coin Separate Module

Coin Sorting Module

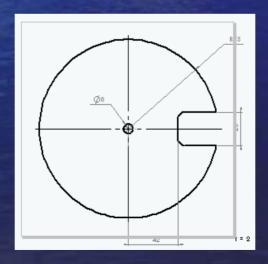
Structure Module

Detail Designing Phase

1. Power Module

Main Supply

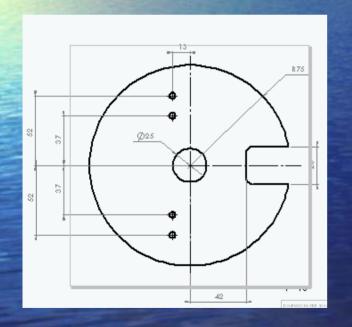
Transformer

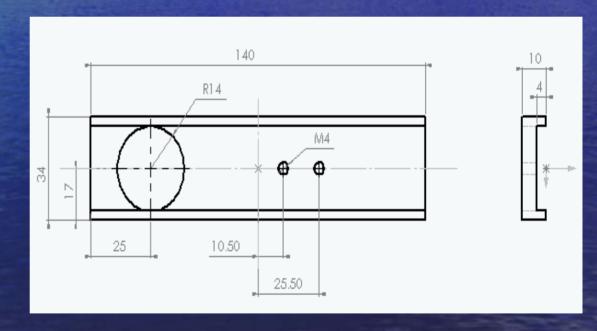

AC 220 Volt

Step Down, 24 Volt

2. Power Transmission Module

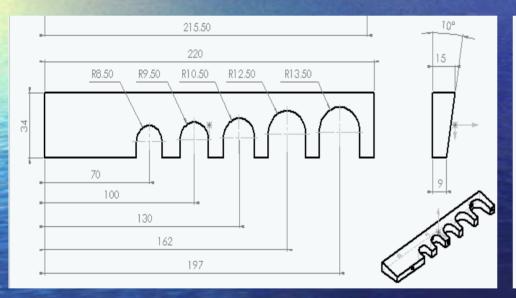
DC Motor

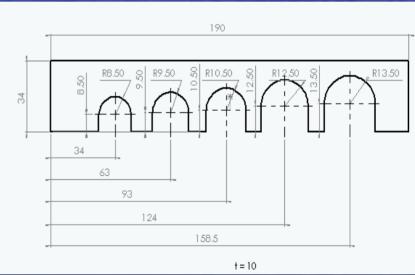

Rotating Plate with slot



3. Coin Separation Module

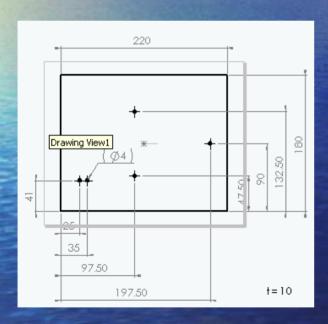
Fixed Plate with slot


Sliding Track with hole

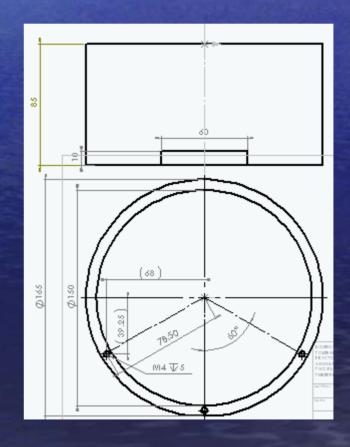


4. Sorting module

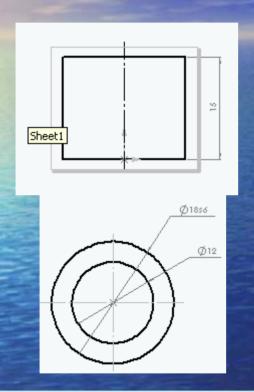
Sorting Track

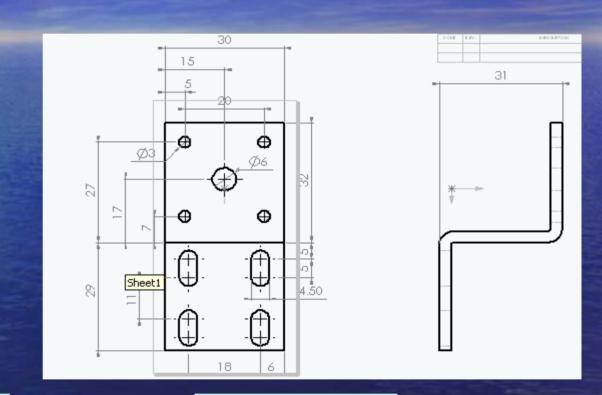


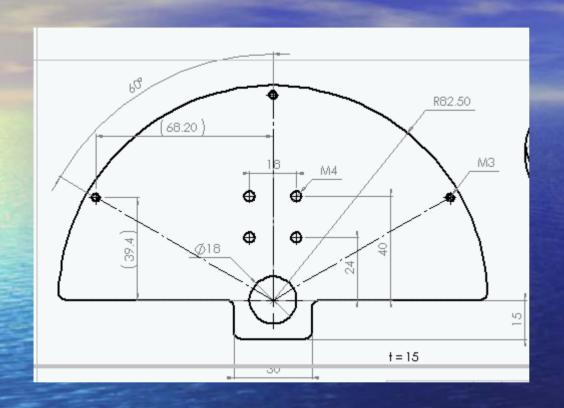
Stack Base Plate

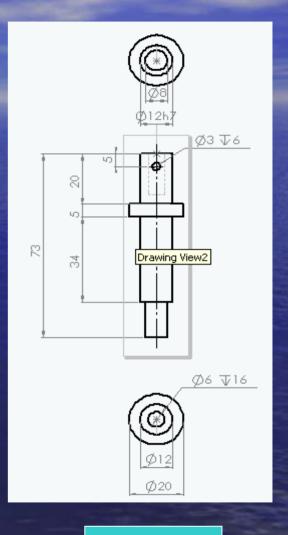


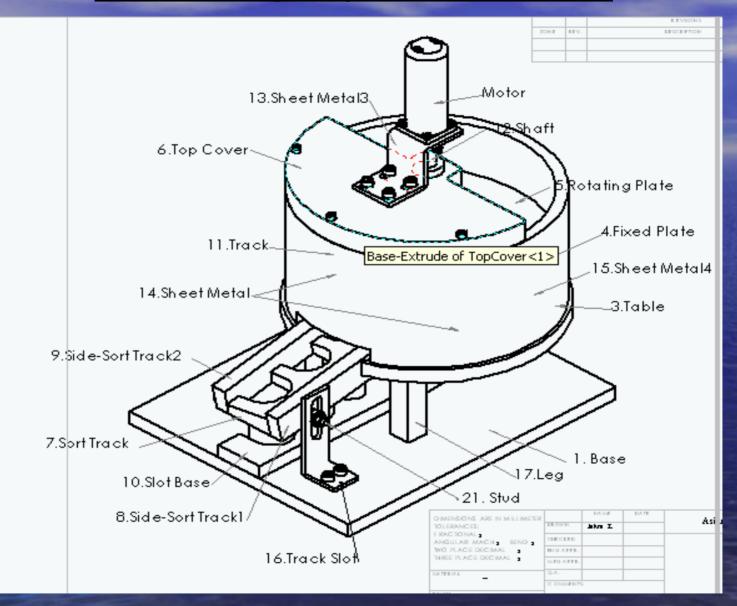
5. Structure Module


Base Table and support

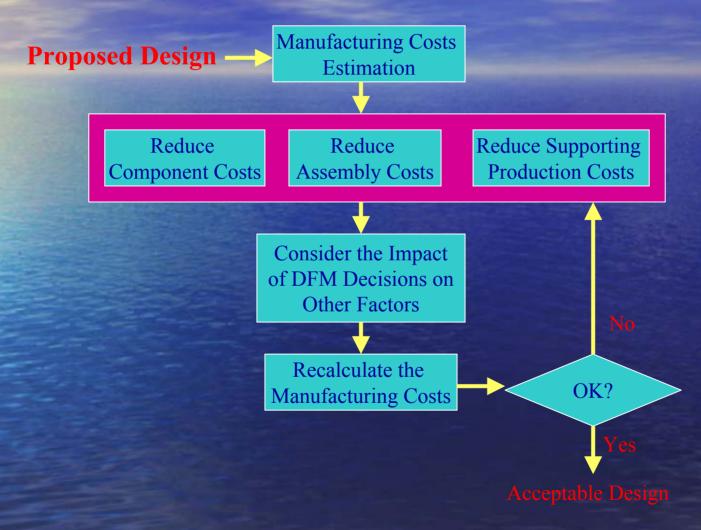

Hopper for Coin


Others Part as Support




Support For Motor

Top Cover


Motor Shaft

Complete Design

Design For Manufacturing

Efficient product Design which can be economically produced

For the Coin Sorter Project – Cost analysis is Neglected

Design For Manufacturing (Contd)

Manufacturability Analysis Worksheet

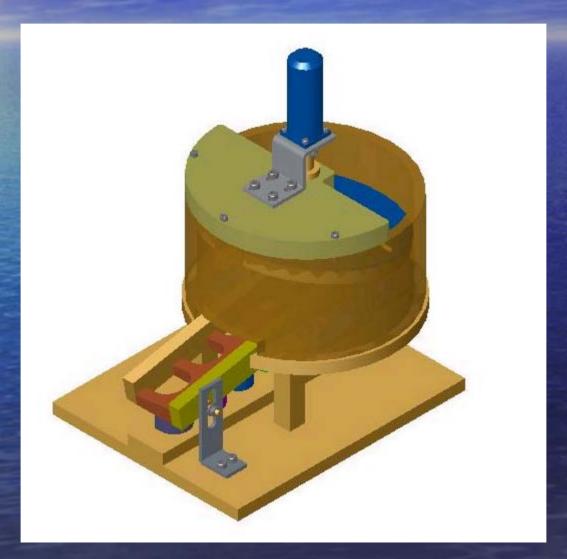
				Assembly				Part Elimination				Assessment			
	Part or Operation	Qty	Type	Н	Ι	S	С	Motion	Mat'l	Ass'y	CFE	V	M	UI	Note
	Base	1	2	0	0	0	0	N	N	Y	0	0	0	0	
	Housing	1	2	0	-	0	0	N	N	Y	0	0	0	0	
	Base Table	1	2	+	0	0	0	N	N	Y	0	0	0	0	
	Fixed Plate	1	2	-	-	-	-	N	N	Y	0	0	0	0	
	Rotating Plate	1	2	+	0	-	0	Y	Y	Y	0	0	0	0	

$$\sum Qty = 65$$

$$\sum CFE = 39$$

$$Count_Ratio = \frac{\sum Qty - \sum CFE}{\sum Qty} = 0.4$$

It Should be close to one, That mean \sum CFE must be 0. This design has scope of part elimination


Design For Manufacturing (Contd)

Manufacturability Analysis Worksheet: Compete Sheet

				Ass	embly			Part Elir	mination		Assesment					
	2	3	4	5	6	7		8	3		9	10	1	12		
Part	Q ty	T y p	н		S	С	M ot io	Ma t'l	A ss y	C F E	V	M	U	Note		
Base	1	e 2	0	0	0	0	Ñ N	N	Υ	0	0	0	0	S		
Housing	1	2	0		0	0	N	N	Y	0	0	0	0			
Table	1	2	+	0	0	0	N	N	Υ	0	0	0	0			
Fixed plate	1	2		-	-		N	N	Y	0	0	0	0			
Rotating plate	1	2	+	0	Ŀ	0	Y	Υ	Y	0	0	0	0			
Top cover	1	2	+	0	0	0	N	N	Y	0	0	0	0			
Sort track	1	2	+	H	-	0	N	Υ	Υ	0	0	0	0			
Side-sort track1	1	2	+	0			N	N	Y	0	0	0	0			
Side-sort track2	1	2	+	0			N	N	Y	0	0	0	0			
Slot Base	1	2	+	0	0		N	N	N	1	0	0	0	-5		
Track	1	2	0	-	-	1	N	Υ	Υ	0	0	0	0			
Shaft	1	2	+	0	0	0	Υ	Y	Υ	0	0	0	0			

Design Simulation with 3D solid model:

Solidworks 3D Software

Prototype Manufacturing

Physical

Prototype

Process Used

Drilling, Tapping, Turning, Milling, Sheet Metal

Material Used:

PVC, Paper, Acrylic, Aluminum, Steel

Prototype Manufacturing (Contd)

B	O	$\sqrt{\mathbf{I}}$

No.	Part Name		Material	Standard
	Base	1	Acrylic	
2	Housing	1	PVC	
3	Table	1	Acrylic	
4	Fixed plate	1	Acrylic	
5	Rotating plate	1	Al	
6	Top cover	1	Acrylic	
7	Sort track	1	Acrylic	
8	Side-sort track1	11	Acrylic	
9	Side-sort track2	1	Acrylic	
10	Slot Base	1	Acrylic	
11	Track	1	Acrylic	
12	Shaft	1	St42	
13	Sheet metal	2	St37	
14	Sheet metal2	1	St37	
15	Sheet metal3	1	St37	
16	Sheet metal4	2	St37	
17	Track slot	1	Acrylic	
18	Wiper Blade	1	St37	
19	Leg	3	St42	
20	Retainer	2	St42	
21	Bush	1	Brass	
22	Stud	1	Brass	
23	Motor	1		
24	Socket Head Cap Screw AM	3	Steel	B18.3.1-3x0.5x20 Hex-SHCS-20NHX
	Socket Head Cap Screw AM			
25	Socket Head Cap Screw_AM	4	Steel	B18.3.1-4x0.7x12 Hex-SHCS-12NHX
	Socket Head Cap Screw_AM			
26	Socket Head Cap Screw_AM	4	Steel	B18.3.1-2.5x0.45x8 Hex-SHCS-8NHX
	Socket Countersunk Head			
27	Screw_AM	1	Steel	B18.3.1-3x0.5x5 Hex-SHCS-5NHX
	Socket Head Cap Screw_AM			

Testing of Prototype

- Initially prototype tested by dropping only single coin .
- Prototype tested for bunch of coins.
- Each time, movement of subassembly and reliability of the product is checked

Results from Testing:

- 1. Coin found stuck in between rotating plate and fixed plate.
- 2. Sliding track angle not enough for sliding the coins.

Refinement & Conclusion

- 1. For the coin stucking problem, one spring is attached to the motor shaft and fixed plate
- 2. Extra material inserted to increase the sliding track angle.

SUCCESSFULLY COMPLETION OF

DESIGN AND MANUFACTURING OF COIN SORTING MACHINE.

