Asian Institute of Technology-AIT

ait Center in vietnam-aitcv

Project 2
 COIN SORTER MACHINE Design and Development

Team members Nguyen Duy Duong
Duong Thanh Trung Bui Trung Thanh

Le Viet Anh
Le Sy Trung

Outline

- General of Phase 1
- Overview of Phase 2
- Product Architecture
- Product Design
- Make Prototype
- Conclusion

Ten steps and product demo

Define customer needs

1. Business Opportunities

- Vietnamese government launch new new type of money: Polymer and Coin since $1^{\text {st }}$ Jan 2004
- Vietnamese Coin has 5 types
- Shop owners require a machine to sort coins

Define customer needs

2. Business Target

- Name of Product: Coin Sorter Machine Machine
- Market segment: Big shops and supermarket
- Business goals: Products will be introduced in April. 2004
- Estimate sale volume: 3000-5000 units units

Define customer needs

1. Method of define Customer needs

- Face to face interview
- Number of interviewee: 30 shop owners owners including 6 lead users
- Place of interview: Hanoi (15), and HCMC (15)
- Customer survey form

Define customer needs

$\#$	Customer Statement	Interpreted Needs
1	l'd like to have a C.S machine is small	C.S dimentions are small
3	l'd like a machine is light weight	C.S is light weight
4	l'd like a machine can sort all my coins at the end of a day business	C.S can sort large numbers of coins
6	l'd like a machine can sort properly coin types	C.S sorts coin exactly
9	l'd like a machine very easy to use to all my staffs	C.S is easy to use
3	l'd like a machine make me reduce stress when use it	C.S has music player

Define customer needs

1. Organize C.Ns and Rate Important needs

Hierarchy	Customer Needs	Imp.
	C.S dimentions are small	10
	C.S is light weight	9
Basic	C.S can sort large number of coins	10
functions	C.S sorts coin exactly	10
	C.S is easy to use	10
Extra function	C.S has music player	8
Upgrade function	Has motor driven sort screen	8
004	7	

Establish product specification

Metric no.	Need no	Metric	Imp	Units
1	1	Dimention	9	$\mathrm{~cm}^{*} \mathrm{~cm}^{*} \mathrm{~cm}$
3	3	Total weight	9	Gram
4	4	Sorting coins per time	9	Coin/s
6	6	Tolerance	10	Mm
7	7	Easy to operation	9	Rank(1...5)
11	13	Music device	9	Number
12	15	Motor driven	8	Number
			8	
1045				

Establish product Specification

Establish product Specification House of Quality for coin sorter

Establish product Specification cost model for coin sorter

No	Components		$\begin{gathered} \text { Qty/un } \\ \text { it } \end{gathered}$	(Dong/ each)	(Total Dong)
1		Coin sorter	5	60,000	300,000
2		Coin tray	1	50,000	50,000
3		Detecting lamp	1	15,000	15,000
4		Music	1	5,000	5,000
5		Sensor counter	5	30,000	150,000
6		Digital indicator	1	50,000	50,000
7		Motor	1	100,000	100,000
		Controller	1	50,000	50,000
	Total		16	360,000	720,000
			15\%	57,600	108,000
	Production cost		25\%	90,000	180,000
				507,600	1,008,000

Concept Generation.

Clarify the problem.

Search externally and Internally.

Explore systematically.

Concept Selection.

Concept screening.

Base on the results of key needs and HOQ, we can screen these concepts to narrow them.
Concept scoring.
Base on the results of concept screening table. We will make the score table to select the best solution.

Selection criteria	$\begin{aligned} & \stackrel{7}{5} \\ & .00 \\ & 0 \\ & 3 \end{aligned}$	Concepts							
		Sol.A		Sol. B-C-F ref.)		Sol. E		Sol. G	
		$\begin{aligned} & \text { an } \\ & \text { E } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & \text { J } \\ & 0 \\ & 0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 3 \\ & 3 \end{aligned}$		$\begin{aligned} & \text { J } \\ & 0 \\ & 0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { on } \\ & \stackrel{y}{\sim} \\ & \text { है } \end{aligned}$		\%	
Ease of use	10	4	40	3	30	4	40	4	40
Ease of maintenance	5	4	20	3	15	4	20	4	20
Durability	10	3	30	3	30	3	30	3	30
Reliability	22	3	66	3	66	1	22	3	66
Shape	7	2	14	3	21	5	35	4	28
Weight	10	3	30	3	30	4	40	3	30
Maximum number of coin per time	8	3	24	3	24	4	32	3	24
Sorting speed	10	3	30	3	30	4	40	3	30
Total score	100	344		300		313		358	
Rank		second		fourth		third		first	
Continue?		Devolop		no		no		Develop	

Refine the specification.

As a concept has been chosen. We refine the specification then bring out the refined specifications as follow:

Metric No	Needs No	Metric	Imp.	Unit	Value
1	1	Dimension	9	mm	$<200 \times 200 \times 250$
2	2	Material	9	Kind	Plastic
3	3	Total weight	9	Gram	<1000
4	4	Sorting coins per time	9	second	>50
5	5	Type coins can sort	9	Type	>5
6	6	Tolerance	8	Mm	<3
7	7	Ease of operation	8	(1...5)	>3
8	10	Cabinets	9	Number	>5
9	11	Indicator for each cabinets	8	Number	>1
10	12	Fake detecting lamp	9	Number	>1
11	13	Music device	9	Number	>1
12	15	Motor driven	9	Number	>1
13	9,12,14	Sensor	8	Number	>5
14	8	Maintenance	9	Time/year	<3

Product Design \& Develop Action plan

Set product objectives

Product design

Select
Prototype

Make
Prototype

Overview
Objectives

1. Internal Objectives

- Minimize number of parts
- Minimize and standardize parts type
- Minimize production time
- Minimize and simply assembly steps
- Upgradable and flexible product
- Available of materials and vendors

Overview
 Objectives

2. External Objectives

- Easy to use
- Easy to maintenance
- Extra function

- Up gradable and flexible product

Product Architecture Modular Architecture

1. Modular architecture selected

- Product must combine of independent chunk
- Each chunk plays one function

Design product with minimize of chunk interactions

- Minimize design changing effects of one chunk to other chunks
- Stabilize production processes

Product Architecture Product Schematic and Cluster

Product design Design components

- Coin sorter module
- Coin trays module
- Extra-function module
- Music player
- Detect fake money

Product design Coin sorter module

- The sieve is made from little erosive material: Stainless steel

Product design Coin sorter module

- The hole of sieve has to guarantee that it does not trap the smaller coins at each floor.
- Parabolic tapering of the edges can apply to optimize this effect
- A mill machine with sphere cuter for 3D surface. Since we do not have such machine, mica is best choice for our prototype

Product design Coin sorter module

- Sort best of 100 coins per batch and maximum for a bath is 150
- Testing with the most difficult case: 149 largest coins and a smaller coin
- Initially, 25-holes sieve was tested: three time of shaking the smaller coin passed through to the lower level

Product design Coin sorter module

- Since the dimension of machine has small enough for easy operation and good appearance $\Rightarrow 10$-hole sieve was tested
- Result: 4 times of shaking the smaller coin passed through in case 100 coins and 5-6 times for the case of 150 coins
- We decided our sieve will have 10 holes for each floor

Product design Coin sorter module

- The ratio between "buffer area" and whole surface of each floor is minimum but it still guarantees the strenath of structure

Product design Coin sorter module

No.	Sieve floor	Diameter of biggest coin through the hole (Rc-mm)	Diameter of sieve hole (R-mm)	D - Dimension (mm)
1	Highest floor	25	25.74	2.6
2	Third floor	23	23.76	2.4
3	Second floor	19	19.8	2
4	Lowest floor	17	17.84	1.8

Product design
 Coin sorter module

- The coin is visible during sorting
- How is the appearance of this module?

Product design Coin sorter module

- Screw using, symmetry design
- How would we get the coins out?
- We cut small vertical slots in the side of each level, two-coins wide and twocoins high

Product design Coin sorter module

Product design Coin trays module

- The idea: The best way to contain separately each type of coin is some trays would be designed and placed under each level accordingly

Product design Coin trays module

- Material: Because this component does not request very strong whereas it needs light and aesthetic, thus mica is a best choice

Product design Coin trays module

Product design Bill of material

No.	Material type	Unit	Quantity	Material code	Applied function
1	Mica 5mm thick	m 2	0.5	WR-01	Wall of each floor
2	Mica 3mm thick	m 2	0.5	CT-01	Coin tray
3	Stainless steel 1 mm thick	m 2	0.5	SS-01	Sieve
4	Steel screw $10 \times 3 \mathrm{~mm}$	Pcs.	50	VC-01	To connect component each others
5	Hinge	To join coin tray with coin sorter module			
6	Silicon $300 \mathrm{ml} /$ tube	Tube	1	SH-01	
7	Other accessories	Lot	1		

Product design List of tool needing to make prototype

No.	Tool and machine name	Unit	Quantity
1	Hand drilling machine: $200 \mathrm{~W} 220 \mathrm{~V} / 50 \mathrm{~Hz}$	Pcs	1
2	Complete of wood cutter set (range 1-20mm)	Set	1
3	Complete of metal cutter set (range 1-20mm)	Set	1
4	Complete of grind stone set (range 1-20mm)	Set	1
5	Complete of file set	Set	1
6	Table drilling machine	Pcs	1
	Personal computer with AutoCAD 2002 7	Software	
8	A4 Laser Printer	Set	1
9	Steel Saw	Pcs	1
10	Others: rule, hammer, screw driver, \ldots	Set	1

Making prototype General production process flow

$\left.\begin{array}{|c|c|c|c|c|}\hline \text { No. } & \text { Action step } & \text { Time } & \begin{array}{c}\text { Necessary } \\ \text { Material }\end{array} & \text { Necessary Tool } \\ \hline 1 & \text { Drawing preparation } & 2 \text { days } & \text { Paper } & \text { PC, Printer } \\ \hline 2 & \text { Material Preparation } & 0.5 \text { days } & & \\ \hline 3 & \begin{array}{c}\text { Making the sieve for } \\ \text { testing }\end{array} & 2 \text { days } & \text { Mica } & \begin{array}{c}\text { Hand drilling machine with } \\ \text { complete of cutter }\end{array} \\ \hline 4 & \text { Redesign } & 1 \text { days } & \text { Paper } & \text { PC, Printer } \\ \hline 5 & \text { Making the final sieve } & 1 \text { days } & \begin{array}{c}\text { Stainless } \\ \text { steel sheet }\end{array} & \begin{array}{c}\text { Table drilling machine with } \\ \text { complete of tool, file }\end{array} \\ \hline 6 & \begin{array}{c}\text { Making the around wall } \\ \text { of the sieves }\end{array} & 2 \text { days } & \text { Mica } & \begin{array}{c}\text { Hand drilling machine with } \\ \text { complete of cutter, file }\end{array} \\ \hline 7 & \begin{array}{c}\text { Assembling the sieve } \\ \text { and around wall }\end{array} & 1 \text { days } & \begin{array}{c}\text { Screw, } \\ \text { silicon }\end{array} & \text { Screw driver, hand tools } \\ \hline 8 & \text { Making the coin tray } & 1 \text { days } & \begin{array}{c}\text { Mica, } \\ \text { screw }\end{array} & \text { Saw, screw driver, hand } \\ \text { tools }\end{array}\right]$

Making prototype Evaluate and refine

No.	Specification	Testing method	Value	Eval uation base on req.ments in Item 2	Recommen- dation
1	Weight	Weighing without load	530 grams	Pass	No-re.
2	Maximum number of coin per one bath	Trying			Pass

Conclusion

Our mission
Design and develop a product Coin Sorter Machine

Conclusion

-From the customer needs \Rightarrow
Establishing specification \Rightarrow Concept generation \Rightarrow Concept selection \Rightarrow Set up product design Objectives \Rightarrow Product

Architecture \Rightarrow Product design \Rightarrow Make
prototype \Rightarrow Test and refine \Rightarrow
Conclusion

Conclusion

-Finally, we obtained satisfactory results.
These are evidences to affirm that our idea and process are true

- Our prototype can be developed to become a commercial product with very much engagement.

Thank you Question and Answer

COIN SORTER MACHINE

DEMONSTRATION

