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Abstract—Precise localization for autonomous robots is 

necessary for advancement in the world of unmanned robotics. 

Probabilistic algorithms are used to fuse multiple position sensors 

in order to locate a robot. But failure of any sensor in this process 

drastically lowers the performance of these algorithms. Here 

comes the need to facilitate these probabilistic models with 

intelligence. This paper presents an intelligent localization 

technique for autonomous maneuvering of robots. Localization of 

the robot is done by fusing three different types of position sensors 

using an Extended Kalman Filter (EKF) and a Kalman Filter 

(KF). The fusing method is made intelligent by keeping track of 

the relative error among the sensors and deciding a reliability 

factor on each sensor accordingly. A Fuzzy inference model has 

been adopted to predict the reliability factor for each sensor. 

According to the predicted reliability of each sensor, an error 

covariance matrix is set up, which is fed into the traditional KF 

and EKF algorithms. This helps the fusion algorithms to fuse the 

sensors intelligently and the final output is more accurate. A high 

precision localization is achieved by this intelligent method of 

fusing. A simulation is carried out in MATLAB considering three 

position sensors. The simulation is validated by making one of the 

sensors erroneous and comparing the output results of the new 

fusion algorithm with the traditional algorithm. 

Keywords— Kalman Filter, Extended Kalman Filter, Fuzzy 

Inference Model, Sensor Reliability, Localization. 

I.  INTRODUCTION  

Intelligent robots have gained a lot of popularity in the recent 
years. These robots are used in various tasks. Agricultural 
sectors use mobile robots to survey the aggregated land and also 
use automatic tractors for farming. Military on the other hand, 
have started implementing intelligent ground vehicles and flying 
machines for survey, mapping and even for combat. Disaster 
management teams have also switched to intelligent robots for 
gathering information related to affected areas before sending 
actual human assistance. In this way, intelligent robots are 
ensuring human safety and easing many toilsome tasks 
previously handled by humans. Navigation of the mobile robots 
without human assistance is a prime objective in this area. To 
navigate these robots, a very precise localization technique is 
required. In autonomous navigation, there is always a question 
to be answered is, “Where am I?”. Research over years have 
proved that, a single sensor is not capable of providing a perfect 
answer to the above question. Thus, multiple position sensors in 
conjunction are used to find the exact location of a robot, which 

is known as sensor fusion in the technical world. Sensors which 
are generally used in calculating position of a robot are Global 
Positioning Systems (GPS), encoders, accelerometers, 
gyroscopes, magnetometers or compasses, laser sensors, 
cameras, optical flow meters, ultrasonic sensors, radars, etc. 
Most of these sensors are being fused to calculate the position of 
an intelligent vehicle. The sensors mentioned above are 
subjected to external noise and in addition to that they have 
limitations of their own. These limitations of the sensors gave 
rise to the need of probabilistic algorithms to fuse the sensors 
together. Researchers have come up with different techniques to 
fuse sensors. Fusing algorithms are based mostly on KF [1], 
EKF [2], Bayesian Filter [3] and Particle Filter (PF) [4]. These 
probabilistic algorithms are capable of minimizing the noise and 
provide almost accurate results. Apart from the fusing 
algorithms, some researchers have used feature matching 
algorithms that works in parallel with the fusing algorithms. 
They use FAST [5], that detects feature points and then PTAM 
[5] is implemented. Vision SLAM [6], a similar algorithm like 
PTAM is also used for mapping and localization. But these 
algorithms can be used at an expense of high computational 
power. These algorithms are vastly used in UAVs. But the 
processing is usually done off board due to the high computation 
required and high power requirements. In all the techniques used 
for sensor fusion, it is always considered that the sensors 
approximately provide us with nearly accurate position 
information in addition with some noise. Under this assumption, 
the algorithms like KF and in case of non-linear systems, the 
EKF works in a fairly accurate manner. 

Localization of a mobile robot under outdoor environments 
is done by using [7] a KF to fuse the data from a wheel encoder, 
GPS and IMU. A similar approach has been adopted by another 
researcher, who has fused data from GPS, inertial navigation 
system (INS) and optical flow meter [8]. The linear and non-
linear equality state constrains are taken into the EKF framework 
to fuse GPS and odometry data for more accurate results [9]. All 
these approaches are dependent on the GPS data which updates 
the noisy odometry data received from the other sensors. GPS is 
fairly accurate at outdoor conditions but becomes unreliable 

under indoor conditions.   

EKF is used to fuse the data from a radar, ultrasonic and 
odometry sensor to localize a mobile robot [10]. EKF is used as 
the sensor fusion technique for localization of a wheeled robot 
[11]. Here, the traditional navigational sensors are used for 



 

navigation along with visual odometry. This eradicates the 
drawbacks of GPS but at an expense of high computational cost. 
This also compels to use off board computation. Therefore, the 
robot no longer operates as a stand-alone system. 

Further, neural network and fuzzy logic has also been 
applied for mobile robot navigation ([12], [13], [14]). The 
outputs obtained from these algorithms even showed better 
results than the conventional navigation techniques. But neural 
fuzzy theory is an intelligent approach of navigation and it 
requires prior training sets to make the network practically 
workable in the real environment. 

All the above mentioned navigation algorithms rely on the 
information provided by the on-board sensors that continuously 
provide information about the vicinity of the mobile robot. 
Though the error of the sensors is taken into account while 
modelling the navigation algorithm, but these sensors can never 
be predicted based on their error models. The behavior of the 
sensors changes dynamically. One shortcoming of the 
navigation algorithms is that whenever one or more sensor starts 
working erroneously, the probabilistic model still takes the 
faulty sensor data into account. This makes the fused output 
highly erroneous. Therefore, researchers have come up with 
fault detection techniques to bypass the faulty sensor. Fault 
Detection and Isolation (FDI) techniques have been applied to 
overcome the faulty sensor problem. FDI technique has been 
used along with a particle filter for fault detection in sensors 
[15]. Particle filter to be at its best, needs a pre-defined map, 
which in itself brings about uncertainties with a dynamic 
environment. 

In this paper, we introduce a fusion algorithm, which uses 
the traditional EKF and KF for fusing the non-linear and linearly 
behaving sensors respectively. Analytical methods have a 
greater chance of failure in detecting faults in sensors. Therefore, 
a Fuzzy model has been adopted based on the relative real time 
errors among the sensors and to decide reliability factors for 
each sensor. This reliability factor, then helps to decide on the 
error covariance of each sensor. This error covariance is applied 
to the KF and EKF algorithms, which makes the fusing process 
intelligent by fusing only the least erroneous sensors. 

The remainder of the paper is organized as follows. Section 
II introduces the conventional KF and EKF algorithms. Section 
III describes the fusion method and introduces the fuzzy logic 
into our proposed fusion algorithm. Section IV shows the 
simulation results of the Kalman Intelligent Filtering (KIF). 
Finally, in section V we conclude our paper. 

II. KALMAN FILTER AND EXTENDED KALMAN FILTER 

KF [2] consist of two steps namely the prediction step (6), 
(7) and the update or correction step (8), (9), (10). In the 
prediction step, the state of the robot (1) i.e. the position 
coordinates and orientation, from the previous filtered output is 
taken to estimate the new state of the robot (6). In the update 
step, the new estimated state is corrected or updated with the 
upcoming data from the sensors (9). 

In KF, we should have a system model (2) and a 
measurement model (3). Each model is added with dynamic zero 
mean white Gaussian noise (4), (5). 

 TABLE I. NOMENCLATURE  

Parameters Descriptions 

𝐴𝑘 State transition matrix   

𝐵𝑘 Control input model 

𝐶𝑘 Measurement Matrix 

𝑑𝑡 Sampling time 

𝑓(𝑋𝑘−1,𝑢𝑘) Non-linear function of state transition and control model 

𝐹𝑘 Jacobian of function of state transition model 

ℎ(𝑋𝑘) Non-linear function of measurement model 

𝐻𝑘 Jacobian of function of measurement model 

𝐼 Identity matrix 

𝑘 Time step 

𝐾𝑘 Kalman gain 

𝑁 Multivariate normal distribution 

�̂�𝑘
− Predicted estimated covariance 

�̂� Updated estimated covariance 

𝑄𝑘 Process noise covariance 

𝑅𝑘 Sensor noise covariance 

𝑆1, 𝑆2, 𝑆3 Sensor-1, Sensor-2, Sensor-3, respectively 

𝑢𝑘 Control vector 

𝑣𝑘 Measurement noise 

𝑉𝑘 Linear velocity of the robot   

𝑤𝑘 Process noise 

𝑥 Position in x-coordinate 

𝑋𝑘 State of the robot 

�̂�𝑘
− Predicted state estimate 

�̂�𝑘 Updated state estimate 

𝑦 Position in y-coordinate 

𝑧𝑘 Measurement 

𝜃 Orientation of the robot 

ωk Angular velocity of the robot 

 State: 

𝑋 = [

𝑥
𝑦
𝜃
] (1) 

 System Model: 
𝑋𝑘 = 𝐴𝑘𝑋𝑘−1 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘  (2) 

Measurement model: 

𝑧𝑘 = 𝐶𝑘𝑋𝑘 + 𝑣𝑘 (3) 

 Here,  𝑤𝑘 and 𝑣𝑘 are the dynamic zero mean white 
Gaussian noise of the state model and the measurement model 
respectively. 

𝑤𝑘~𝑁(0, 𝑄𝑘) (4) 

𝑣𝑘~𝑁(0, 𝑅𝑘) (5) 

Kalman Filter equations: 

Prediction step: 

�̂�𝑘
− = 𝐴𝑘�̂�𝑘−1 + 𝐵𝑘𝑢𝑘 

�̂�𝑘
− = 𝐴𝑘�̂�𝑘−1𝐴𝑘

𝑇 + 𝑄𝑘 

(6) 

(7) 

Update step: 

𝐾𝑘 = �̂�𝑘
−𝐶𝑘

𝑇(𝐶𝑘�̂�𝑘
−𝐶𝑘

𝑇 + 𝑅𝑘)
−1

   (8) 

�̂�𝑘 = �̂�𝑘
− + 𝐾𝑘(𝑧𝑘 − 𝐶𝑘�̂�𝑘

−)   (9) 

�̂�𝑘 = (𝐼 − 𝐾𝑘𝐶𝑘)�̂�𝑘
− (10) 

 Real systems in the world are never linear in nature, 
therefore, the KF fails under real environments. To make the KF 
valid in real systems, the non-linear function governing the robot 
state is linearized by taking the Jacobian of the same. This KF is 
named as Extended Kalman filter (EKF). 

The modified system model (11) and measurement model 
(12) are shown below respectively: 



 

𝑋𝑘 = 𝑓(𝑋𝑘−1,𝑢𝑘) + 𝑤𝑘 (11) 

𝑧𝑘 = ℎ(𝑋𝑘) + 𝑣𝑘 (12) 

Extended Kalman Filter Equations: 

 Prediction step: 

�̂�𝑘
− = 𝑓(�̂�𝑘−1, 𝑢𝑘) (13) 

�̂�𝑘
− = 𝐹𝑘�̂�𝑘−1𝐹𝑘

𝑇 + 𝑄𝑘 (14) 

 Update step: 

𝐾𝑘 = �̂�𝑘
−𝐻𝑘

𝑇(𝐻𝑘�̂�𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)
−1

 (15) 

�̂�𝑘 = �̂�𝑘
− + 𝐾𝑘(𝑧𝑘 − ℎ(�̂�𝑘

−)) (16) 

�̂�𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)�̂�𝑘
− (17) 

Here,  

𝐹𝑘 =
𝜕(𝑓(𝑋𝑘−1,𝑢𝑘))

𝜕𝑋
|�̂�𝑘

− 
(18) 

𝐻𝑘 =
𝜕(ℎ(𝑋𝑘)

𝜕𝑋
|�̂�𝑘

− 
(19) 

III. PROPOSED FUSION ALGORITHM 

A discrete KF is used to fuse the linearly behaving sensors 

and an EKF is used to fuse the non-linear sensors. KF and EKF, 

both are used in order to prove the validity of the proposed 

fusion algorithm under both linear and non-linear ranges. As we 

know, sensors behave dynamically under different real time 

conditions, and no noise model (4), (5) can be in sync with the 

real sensor noises over the time. Thus, our algorithm relies on a 

fuzzy model as shown in Fig. 4, created on the basis of the 

relative differences among the sensory outputs as shown in Fig. 

3. This fuzzy model sets a reliability factor on each sensor. 

According to the fuzzy rule set as presented in Table II, process 

covariance, 𝑄𝑘|𝑆1  for sensor-1 and error covariance, 𝑅𝑘|𝑆2and 

𝑅𝑘|𝑆3for sensor-2 and sensor-3 respectively, are modelled at 

each time step k. These covariance matrices are replaced by the 

conventional covariance matrices in (28), (29) and (34). This 

allows the KF algorithm to fuse the sensors intelligently. The 

Kalman Intelligent Filtering (KIF) algorithm shown in Fig. 2, 

gets rid of the analytical noise modelling which has a higher 

possibility of failure   with time. Under different simulation 

conditions, it has been proved that KIF skips the most erroneous 

sensor in the fusing process and again takes it into consideration 

under a considerable reliability factor. 

A. Architecture of sensor fusion algorithm 

For executing the simulation, one of the sensors, S1 is 

considered non-linear and the other two sensors, S2 and S3 are 

expected to give a position coordinate as shown. 

𝑧𝑆2 = [
𝑥1
𝑦1
] (20) 

𝑧𝑆3 = [
𝑥2
𝑦2
] (21) 

S1 follows a velocity based function, which is the state 

transition model (22) in our case. 

 

 

State Transition Model: 

𝑓(𝑋𝑘−1,𝑢𝑘) =

[
 
 
 𝑥𝑘−1 − 

𝑉𝑘

𝜔𝑘
𝑠𝑖𝑛𝜃𝑘 + 

𝑉𝑘

𝜔𝑘
sin (𝜃𝑘 +𝜔𝑘𝑑𝑡)

𝑦𝑘−1 + 
𝑉𝑘

𝜔𝑘
𝑐𝑜𝑠𝜃𝑘 − 

𝑉𝑘

𝜔𝑘
cos (𝜃𝑘 + 𝜔𝑘𝑑𝑡)

θk-1+ωkdt ]
 
 
 

  

  (22) 

 As it is a non-linear function, it has to be linearized by 
taking the Jacobian (18) of the state function as shown in (22), 
w.r.t. the state of the robot (1). 

𝐹𝑘 =

[
 
 
 
 1 0

𝑉𝑘
𝜔𝑘

cos(𝜃𝑘 + 𝜔𝑘𝑑𝑡) −
𝑉𝑘
𝜔𝑘

𝑐𝑜𝑠𝜃𝑘

0 1
𝑉𝑘
𝜔𝑘

sin(𝜃𝑘 + 𝜔𝑘𝑑𝑡) −
𝑉𝑘
𝜔𝑘

𝑠𝑖𝑛𝜃𝑘

0 0 1 ]
 
 
 
 

 (23) 

Measurement model for S2 and S3 respectively: 
𝑧𝑆2 = 𝐶𝑘|𝑆2𝑋𝑘 + 𝑣𝑘|𝑆2  (24) 

𝑧𝑆3 = 𝐶𝑘|𝑆3𝑋𝑘 + 𝑣𝑘|𝑆3  (25) 

The measurement matrices for (24) and (25) are as shown below: 

𝐶𝑆2 = 𝐶𝑆3 = [
1 0 0
0 1 0

] (26) 

 Therefore, in the fusing algorithm, the S1 and S2 are fused 
using EKF and the estimated output is again fused with S3 using 
KF for precise positioning as shown in Fig. 1. 

Equations Governing the fusion algorithm: 

STAGE 1: 
 Prediction step: 

�̂�𝑘|𝑆1
− = 𝑓(�̂�𝑘−1, 𝑢𝑘|𝑆1) (27) 

�̂�𝑘|𝑆1
− = 𝐹𝑘|𝑆1�̂�𝑘−1𝐹𝑘|𝑆1

𝑇 + 𝑄𝑘|𝑆1  (28) 

 Update step: 

𝐾𝑘|(𝑆1+𝑆2) = �̂�𝑘|𝑆1
− 𝐶𝑘|𝑆2

𝑇 (𝐶𝑘|𝑆2�̂�𝑘|𝑆1
− 𝐶𝑘|𝑆2

𝑇 + 𝑅𝑘|𝑆2)
−1

 (29) 

�̂�𝑘|(𝑆1+𝑆2) = �̂�𝑘|𝑆1
− + 𝐾𝑘|(𝑆1+𝑆2)(𝑧𝑘|𝑆2 − 𝐶𝑘|𝑆2�̂�𝑘|𝑆1

− ) (30) 

�̂�𝑘|(𝑆1+𝑆2) = (𝐼 − 𝐾𝑘|(𝑆1+𝑆2)𝐶𝑘|𝑆2)�̂�𝑘|𝑆1
−  (31) 

STAGE 2: 
 Prediction step: 

�̂�𝑘|(𝑆1+𝑆2)
− = 𝐴𝑘|(𝑆1+𝑆2)

�̂�𝑘|(𝑆1+𝑆2)    (32) 

�̂�𝑘|(𝑆1+𝑆2)
− = 𝐴𝑘|(𝑆1+𝑆2)

�̂�𝑘|(𝑆1+𝑆2)𝐴𝑘|(𝑆1+𝑆2)
𝑇 + 𝑄𝑘|(𝑆1+𝑆2)

 

(33) 

 
Fig. 1. Proposed Fusion Process 
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 Update step: 

𝐾𝑘|(𝑆1+𝑆2+𝑆3) = �̂�𝑘|(𝑆1+𝑆2)
− 𝐶𝑘|𝑆3

𝑇 (𝐶𝑘|𝑆3�̂�𝑘|(𝑆1+𝑆2)
− 𝐶𝑘|𝑆3

𝑇 + 𝑅𝑘|𝑆3)
−1

 

                                                                                        (34) 

�̂�𝑘|(𝑆1+𝑆2+𝑆3) = �̂�𝑘|(𝑆1+𝑆2)
−

+ 𝐾𝑘|(𝑆1+𝑆2+𝑆3)(𝑧𝑘|𝑆3 − 𝐶𝑘|𝑆3�̂�𝑘|(𝑆1+𝑆2)
− ) 

                                                                                            (35) 

�̂�𝑘|(𝑆1+𝑆2+𝑆3) = (𝐼 − 𝐾𝑘|(𝑆1+𝑆2+𝑆3)𝐶𝑘|𝑆3)�̂�𝑘|(𝑆1+𝑆2)
−  (36) 

As, it is a recursive process, therefore the updated state estimate 
(35) and updated estimate covariance (36), are fed back to (27) 
and (28) as �̂�𝑘 and �̂�𝑘  respectively, as shown in Fig. 1 and Fig. 2, 
for the next iteration. 

B. Deciding on the Error Covariance matrix using Fuzzy 

inference model 

The aim here, is to model an error covariance matrix with 

zero mean for each sensor. A fuzzy inference model as shown 

in Fig. 4 is used on the basis of the relative difference among 

the sensory outputs Fig. 3. The reliability factor on a sensor is 

set to low when two connecting error branches to that sensor, is 

much higher than the third branch. According to the rule set as 

presented in Table II, the error covariance matrix for the least 

reliable sensor is multiplied by a high factor. This makes the 

influence of the erroneous sensor over the estimated covariance 

(36) and Kalman Filter Gain (34) very less. Therefore, the 

Updated state estimate (35) is much more oriented towards the 

state estimated by the reliable sensors. The Fuzzy inference 

model has three inputs and three outputs. The absolute 

difference between two particular sensory outputs is taken as 

the input. If the first sensor gives (𝑥1, 𝑦1) as the position co-

ordinates and the second sensor gives (𝑥2,   𝑦2) , then the 

absolute error between them is: 

∆𝐸 = √(𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2 (37) 

Likewise, ∆𝐸1, ∆𝐸2 and ∆𝐸3 are the inputs to the fuzzy 
inference model as shown in Fig. 4. The output of the Fuzzy 
model is the process covariance matrix 𝑄𝑘|𝑆1  and the error 

covariance matrices 𝑅𝑘|𝑆2
 and 𝑅𝑘|𝑆3

. 

IV. RESULTS AND DISCUSSIONS 

         Simulation of the Fuzzy based EKF sensor fusion 
technique has been simulated using MATLAB. We validated 
our algorithm using two trajectories similar to an R-shaped 

 
Fig. 2. Kalman Intelligent Filtering Algorithm 

 
Fig. 3. Relative error among the sensory output 
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Fig. 4. Fuzzy membership functions (a) Input ∆E1 (b) Input ∆E2 (c) Input ∆E3 
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path and a circle. These paths are created using a velocity based 
model (22), added with random white Gaussian noise, in an 
iterative process for 360 iterations. Three different error 
scenarios are also considered for the validity of the proposed 
algorithm. The three sensor error scenarios are as follows: 

Scenario 1: When S3 drifts away totally as shown in Fig. 5. 
Scenario 2: When S2 mal functions and shows repeatedly same 
data for an elongated period of time as shown in Fig. 6. Same 
scenario considering S3 erroneous, is shown in Fig. 8. 
Scenario 3: When S1 is affected by a bias value as shown in Fig. 
7. 

Note: For all the figures shown below, S1 is represented in 
magenta, S2 in green, S3 in indigo and fused outputs in red. 

For the first scenario conventional EKF has been applied and 
it can be clearly seen in Fig. 5(a), that the fused output, gets 
distorted and tries to follow an optimum path considering all the 
available sensory data. Under the same applied conditions, the 
simulation is repeated but using our new intelligent technique of 
fusing. This time, the algorithm takes a decision between the 
accurate and the erroneous sensors, and the filtered output 
follows the more accurate sensors. It can be seen in Fig. 5(b) that 
the KIF technique completely skips the erroneous sensor from 
the fusion process. 
 In the second scenario Fig. 6(b) and Fig. 8(b) shows better 
results as compared to Fig. 6(a) and Fig. 8(a) respectively. Our 
proposed algorithm does not take the sensor into the fusion 

process when it loses signal but again takes it into consideration 
when sensible data is received from that sensor.  
 In the third scenario as S1 is an aiding sensor to the system 
model, therefore the EKF model has corrected the state of the 
robot, considering the measurement models as shown in Fig. 
7(a). But compared to the result shown in Fig. 7(b), it can be 
seen that our proposed algorithm shows better results. 
  In Table III, the standard deviation of the most accurate 
sensors and the fused output under different scenarios has been 
compared. The maximum standard deviation along x-coordinate 
and y-coordinate has been recorded for both the algorithms. It is 
clear from Table III, that under the above cited scenarios, the 
standard deviation of the position coordinates under proposed 
algorithm is much less than that of the traditional EKF 
algorithm.   

   
(a). Fusion with EKF (a). Fusion with EKF (a). Fusion with EKF 

   
(b). Fusion with proposed method (b). Fusion with proposed method (b). Fusion with proposed method 

Fig. 5. Scenario 1 with drift in sensor 3. Fig. 6. Scenario 2 with signal lost by sensor 2. Fig. 7. Scenario 3 with sensor 3 biased by a factor. 

TABLE III. STANDARD DEVIATION FOR DIFFERENT SCENARIOS 
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Trajectory 

Standard 
deviation along 

x-coordinate 
(max) 

Standard 
deviation along 

y-coordinate 
(max) 

EKF (m) KIF 
(m) 

EKF 
(m) 

KIF  
(m) 

1 S3 R-shaped 165.02 26.81 186.07 11.91 

2 
S2 Circle 126.73 30.06 165.56 22.82 

S3 R-shaped 85.94 17.18 243.93 17.28 

3 S1 Circle 51.13 27.82 39.69 15.64 



 

 
(a). Fusion with EKF 

 
(b). Fusion with proposed method 

Fig. 8. Scenario 2 with lost in signal by sensor 3. 

 From the simulation results between the standard EKF 
technique and our proposed technique, it is clear that our 
technique works better than the traditional one under the 
condition that one of the sensors in the fusion process is 
erroneous. 

V. CONCLUSION 

In this paper, an intelligent way of sensor fusion using EKF 
has been proposed for localization of autonomous robots. In the 
sensor fusion techniques for robot localization, sensory error 
models are taken into consideration while fusing. But in 
dynamic environments the sensors might behave differently than 
the analytical error models. It can be seen from the simulations 
that EKF fails under such conditions. We came up with a 
solution to this problem by integrating the fuzzy inference theory 
to the EKF. Position sensors usually suffer from problems like 
signal lose, drift and permanent shift. These three scenarios are 
considered in our simulation and our proposed algorithm tackles 
all these three types of errors better than the standard EKF 
model. Our proposed algorithm opens up, one more dimension 
to the Kalman Filter family. Our concept of Kalman Intelligent 
Filtering has been validated via simulations in MATLAB. This 
model eradicates the necessity of modelling sensor noise. 
Computing the error covariance of a particular sensor in 

dynamic environments is perfectly carried out by the fuzzy 
model irrespective of the path maneuvered. This method 
proposed as Kalman Intelligent Filtering (KIF) can be applied to 
the real world mobile robots and UAVs where a reliable 
localization estimation is necessary. 
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